A319453 Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 1, 1, 1; 0, 1, 2, 1, 1; 0, 1, 2, 2, 1, 1; 0, 1, 3, 3, 2, 1, 1; 0, 1, 3, 4, 3, 2, 1, 1; 0, 1, 4, 5, 5, 3, 2, 1, 1; 0, 1, 4, 7, 6, 5, 3, 2, 1, 1; 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1; 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1; 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
p:= proc(n) option remember; local i, s; s:= ""||n; for i to iquo(length(s), 2) do if s[i]<>s[-i] then return false fi od; true end: h:= proc(n) option remember; `if`(n<1, 0, `if`(p(n), n, h(n-1))) end: b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))): seq(T(n), n=0..14);
Comments