A261132 Number of ways to write n as the sum u+v+w of three palindromes (from A002113) with 0 <= u <= v <= w.
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 16, 17, 17, 18, 17, 17, 16, 15, 13, 12, 11, 10, 9, 8, 7, 7, 6, 6, 6, 6, 5, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 11, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 12, 8, 8, 8
Offset: 0
Examples
a(0)=1 because 0 = 0+0+0; a(1)=1 because 1 = 0+0+1; a(2)=2 because 2 = 0+1+1 = 0+0+2; a(3)=3 because 3 = 1+1+1 = 0+1+2 = 0+0+3. a(28) = 6 since 28 can be expressed in 6 ways as the sum of 3 palindromes, namely, 28 = 0+6+22 = 1+5+22 = 2+4+22 = 3+3+22 = 6+11+11 = 8+9+11.
Links
- Giovanni Resta, Table of n, a(n) for n = 0..10000
- Javier Cilleruelo and Florian Luca, Every positive integer is a sum of three palindromes, arXiv: 1602.06208 [math.NT], 2016-2017.
- Erich Friedman, Problem of the Month (June 1999)
- James Grime and Brady Haran, Every Number is the Sum of Three Palindromes, Numberphile video (2018)
- Hugo Pfoertner, Plot of first 10^6 terms
- Hugo Pfoertner, Plot of first 3*10^7 terms
- Hugo Pfoertner, Plot of low values in range 7*10^6 ... 10^7
Programs
-
Maple
A261132 := proc(n) local xi,yi,x,y,z,a ; a := 0 ; for xi from 1 do x := A002113(xi) ; if 3*x > n then return a; end if; for yi from xi do y := A002113(yi) ; if x+2*y > n then break; else z := n-x-y ; if z >= y and isA002113(z) then a := a+1 ; end if; end if; end do: end do: return a; end proc: seq(A261132(n),n=0..80) ; # R. J. Mathar, Sep 09 2015
-
Mathematica
pal=Select[Range[0, 1000], (d = IntegerDigits@ #; d == Reverse@ d)&]; a[n_] := Length@ IntegerPartitions[n, {3}, pal]; a /@ Range[0, 1000]
-
PARI
A261132(n)=n||return(1); my(c=0, i=inv_A002113(n)); A2113[i] > n && i--; until( A2113[i--]*3 < n, j = inv_A002113(D = n-A2113[i]); if( j>i, j=i, A2113[j] > D && j--); while( j >= k = inv_A002113(D - A2113[j]), A2113[k] == D - A2113[j] && c++; j--||break));c \\ For efficiency, this uses an array A2113 precomputed at least up to n. - M. F. Hasler, Sep 10 2018
Formula
a(n) = Sum_{k=0..3} A319453(n,k). - Alois P. Heinz, Sep 19 2018
Extensions
Examples revised and plots for large n added by Hugo Pfoertner, Aug 11 2015
Comments