A319453
Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 1, 1;
0, 1, 2, 2, 1, 1;
0, 1, 3, 3, 2, 1, 1;
0, 1, 3, 4, 3, 2, 1, 1;
0, 1, 4, 5, 5, 3, 2, 1, 1;
0, 1, 4, 7, 6, 5, 3, 2, 1, 1;
0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1;
0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1;
0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1;
...
Columns k=0-10 give:
A000007,
A136522 (for n>0),
A319468,
A261131,
A319469,
A319470,
A319471,
A319472,
A319473,
A319474,
A319475.
-
p:= proc(n) option remember; local i, s; s:= ""||n;
for i to iquo(length(s), 2) do if
s[i]<>s[-i] then return false fi od; true
end:
h:= proc(n) option remember; `if`(n<1, 0,
`if`(p(n), n, h(n-1)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))):
seq(T(n), n=0..14);
A091581
Number of partitions of n into distinct decimal palindromes.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 17, 19, 21, 23, 26, 27, 30, 32, 34, 36, 37, 39, 40, 42, 42, 44, 44, 45, 45, 47, 47, 47, 49, 48, 50, 50, 52, 52, 55, 55, 58, 60, 60, 64, 65, 68, 69, 73, 73, 77, 78, 82, 84, 84, 88, 88, 92, 92, 96, 96, 100, 100, 105, 107, 107, 113
Offset: 0
n=13: there are A000009(13)=18 partitions of 13 into distinct integers, 4 of them contain non-palindromes: 13=12+1, 13=10+3, 13=10+2+1 and 13 itself, therefore a(13)=18-4=14;
for n=14 there are a(14)=17 partitions into palindromes: 11+3 = 11+2+1 = 9+5 = 9+4+1 = 9+3+2 = 8+6 = 8+5+1 = 8+4+2 = 8+3+2+1 = 7+6+1 = 7+5+2 = 7+4+3 = 7+4+2+1 = 6+5+3 = 6+5+2+1 = 6+4+3+1 = 5+4+3+2.
A088669
Number of partitions of n into decimal repdigit numbers.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 74, 96, 126, 162, 208, 263, 333, 415, 518, 639, 788, 962, 1174, 1420, 1716, 2060, 2468, 2940, 3497, 4137, 4886, 5747, 6744, 7885, 9203, 10702, 12424, 14379, 16611, 19136, 22009, 25245, 28915, 33037, 37688, 42901, 48765
Offset: 0
A282584
Number of compositions (ordered partitions) of n into decimal palindromes (A002113).
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1022, 2042, 4081, 8156, 16300, 32576, 65104, 130112, 260032, 519681, 1038595, 2075660, 4148259, 8290402, 16568581, 33112734, 66176648, 132255728, 264316464, 528243231, 1055707644, 2109858797, 4216606912, 8426997041, 16841569684, 33658308890, 67266993433
Offset: 0
a(4) = 8 because we have [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
-
nmax = 37; CoefficientList[Series[1/(1 - Sum[Boole[PalindromeQ[k]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
A282585
Number of ways to write n as an ordered sum of 3 squarefree palindromes (A071251).
Original entry on oeis.org
0, 0, 0, 1, 3, 6, 7, 9, 12, 19, 21, 21, 18, 24, 27, 28, 18, 18, 19, 24, 15, 10, 6, 12, 12, 12, 9, 9, 12, 15, 18, 12, 9, 7, 15, 15, 15, 9, 12, 15, 18, 18, 12, 9, 9, 18, 15, 12, 0, 9, 9, 9, 0, 0, 0, 6, 6, 9, 12, 9, 12, 15, 18, 18, 12, 9, 13, 18, 18, 18, 9, 15, 18, 21, 18, 12, 9, 15, 21, 21, 21, 9, 18, 21, 24, 18
Offset: 0
a(22) = 6 because we have [11, 6, 5], [11, 5, 6] [6, 11, 5], [6, 5, 11], [5, 11, 6] and [5, 6, 11].
Cf.
A002113,
A005117,
A035137,
A071251,
A091580,
A091581,
A260254,
A261131,
A261132,
A261422,
A280210,
A282584.
-
nmax = 85; CoefficientList[Series[Sum[Boole[SquareFreeQ[k] && PalindromeQ[k]] x^k, {k, 1, nmax}]^3, {x, 0, nmax}], x]
A091584
Number of partitions of the n-th decimal palindrome into decimal palindromes.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 55, 788, 5747, 28915, 114064, 378823, 1105429, 2916219, 7093435, 8275126, 17341313, 34721974, 66837990, 124308827, 224290376, 393929311, 675393430, 1133103539, 1864009161, 3157186031, 5011108578, 7836124010, 12086660443
Offset: 1
A338847
Number of compositions (ordered partitions) of n into distinct decimal palindromes.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 11, 13, 19, 27, 56, 63, 98, 122, 180, 324, 376, 538, 710, 962, 1130, 2202, 2341, 3410, 4226, 5276, 6692, 8324, 13940, 15476, 21692, 22394, 32952, 33555, 43418, 47738, 93002, 92282, 101666, 136346, 140810, 176186, 176336, 212448
Offset: 0
Showing 1-7 of 7 results.
Comments