cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319453 Number T(n,k) of partitions of n into exactly k nonzero decimal palindromes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 0, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 4, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Comments

Differs from A008284 and from A072233 first at T(10,1) = 0.

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1,  1;
  0, 1, 2,  1,  1;
  0, 1, 2,  2,  1,  1;
  0, 1, 3,  3,  2,  1,  1;
  0, 1, 3,  4,  3,  2,  1, 1;
  0, 1, 4,  5,  5,  3,  2, 1, 1;
  0, 1, 4,  7,  6,  5,  3, 2, 1, 1;
  0, 0, 5,  8,  9,  7,  5, 3, 2, 1, 1;
  0, 1, 4, 10, 11, 10,  7, 5, 3, 2, 1, 1;
  0, 0, 5, 11, 15, 13, 11, 7, 5, 3, 2, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A136522 (for n>0), A319468, A261131, A319469, A319470, A319471, A319472, A319473, A319474, A319475.
Row sums give A091580.
T(2n,n) gives A319454.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          b(n, h(i-1))+expand(x*b(n-i, h(min(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, h(n))):
    seq(T(n), n=0..14);

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=2} (1-y*x^A002113(j)).
Sum_{k=0..3} T(n,k) = A261132(n).

A341155 Number of partitions of n into 2 distinct nonzero decimal palindromes.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 06 2021

Keywords

Crossrefs

A341191 Number of ways to write n as an ordered sum of 2 nonzero decimal palindromes.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 7, 6, 5, 4, 3, 2, 2, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 7, 2, 2
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[Boole[PalindromeQ[k]] x^k, {k, 1, nmax}]^2, {x, 0, nmax}], x] // Drop[#, 2] &

A319477 Nonnegative integers which cannot be obtained by adding exactly two nonzero decimal palindromes.

Original entry on oeis.org

0, 1, 21, 32, 43, 54, 65, 76, 87, 98, 111, 131, 141, 151, 161, 171, 181, 191, 201, 1031, 1041, 1042, 1051, 1052, 1053, 1061, 1062, 1063, 1064, 1071, 1072, 1073, 1074, 1075, 1081, 1082, 1083, 1084, 1085, 1086, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1099
Offset: 1

Views

Author

Alois P. Heinz, Sep 19 2018

Keywords

Comments

Every integer larger than two can be obtained by adding exactly three nonzero decimal palindromes.
The nonzero palindromes of this sequence are in A213879.

Crossrefs

Cf. A002113, A035137 (allowing zero), A213879, A261131, A319453, A319468, A319586.

Programs

  • Maple
    p:= proc(n) option remember; local i, s; s:= ""||n;
          for i to iquo(length(s), 2) do if
            s[i]<>s[-i] then return false fi od; true
        end:
    h:= proc(n) option remember; `if`(n<1, 0,
         `if`(p(n), n, h(n-1)))
        end:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i (k-> b(n, h(n), k)-b(n, h(n), k-1))(2):
    a:= proc(n) option remember; local j; for j from 1+
          `if`(n=1, -1, a(n-1)) while g(j)<>0 do od; j
        end:
    seq(a(n), n=1..80);

Formula

A319468(a(n)) = 0.

A337853 a(n) is the number of partitions of n as the sum of two Niven numbers.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 3, 2, 4, 3, 3, 4, 3, 3, 5, 3, 4, 5, 4, 4, 7, 4, 5, 6, 5, 3, 7, 4, 4, 6, 4, 2, 7, 3, 4, 5, 4, 3, 7, 3, 4, 5, 4, 3, 8, 3, 4, 6, 3, 3, 6, 2, 5, 6, 5, 3, 8, 4, 4, 6
Offset: 0

Views

Author

Marius A. Burtea, Sep 26 2020

Keywords

Comments

a(n) >= 1 for n >= 2 ?.
For n <= 200000, a(n) = 1 only for n = 2, 3, 299, (2 = 1 + 1, 3 = 1 + 2, 299 = 1 + 288) and a(n) = 2 only for n in {4, 5, 35, 59, 79, 95, 97, 149, 169, 179, 389}.

Examples

			0 and 1 cannot be decomposed as the sum of two Niven numbers, so a(0) = a(1) = 0.
4 = 1 + 3 = 2 + 2 and 1, 2, 3 are in A005349, so a(4) = 2.
15 = 3 + 12 = 5 + 10 = 6 + 9 = 7 + 8 and 3, 5, 6, 7, 8, 9, 10, 12 are in A005349, so a(15) = 4.
		

Crossrefs

Programs

  • Magma
    niven:=func; [#RestrictedPartitions(n,2,{k: k in [1..n-1] | niven(k)}): n in [0..100]];
  • Mathematica
    m = 100; nivens = Select[Range[m], Divisible[#, Plus @@ IntegerDigits[#]] &]; a[n_] := Length[IntegerPartitions[n, {2}, nivens]]; Array[a, m, 0] (* Amiram Eldar, Sep 27 2020 *)
Showing 1-5 of 5 results.