A319528 a(n) = 8 * sigma(n).
8, 24, 32, 56, 48, 96, 64, 120, 104, 144, 96, 224, 112, 192, 192, 248, 144, 312, 160, 336, 256, 288, 192, 480, 248, 336, 320, 448, 240, 576, 256, 504, 384, 432, 384, 728, 304, 480, 448, 720, 336, 768, 352, 672, 624, 576, 384, 992, 456, 744, 576, 784, 432, 960, 576, 960, 640, 720, 480, 1344, 496, 768, 832
Offset: 1
Links
Crossrefs
Programs
-
GAP
List([1..70],n->8*Sigma(n)); # Muniru A Asiru, Sep 28 2018
-
Maple
with(numtheory): seq(8*sigma(n), n=1..64);
-
Mathematica
8*DivisorSigma[1,Range[70]] (* Harvey P. Dale, Dec 24 2018 *)
-
PARI
a(n) = 8 * sigma(n);
Formula
Dirichlet g.f.: 8*zeta(s-1)*zeta(s). (After Ilya Gutkovskiy)
Conjecture: a(n) = sigma(7*n) = A283078(n) iff n is not a multiple of 7.
Conjecture is true, since sigma is multiplicative, so if (7,n) = 1 then sigma(7*n) = sigma(7)*sigma(n) = 8*sigma(n). - Charlie Neder, Oct 02 2018
Comments