cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319636 a(n) = Sum_{k=1..n} binomial(2*n - 3*k + 1, n - k)*k/(n - k + 1).

Original entry on oeis.org

0, 1, 3, 6, 11, 23, 60, 182, 589, 1960, 6641, 22849, 79676, 281048, 1001100, 3595865, 13009663, 47366234, 173415160, 638044198, 2357941155, 8748646416, 32576869239, 121701491725, 456012458960, 1713339737046, 6453584646774, 24364925259967, 92185136438926, 349479503542513
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 25 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([1..n], k-> Binomial(2*n-3*k+1,n-k)*k/(n-k+1))); # Muniru A Asiru, Sep 25 2018
  • Maple
    a:=n->add(binomial(2*n-3*k+1,n-k)*k/(n-k+1),k=1..n): seq(a(n),n=0..30); # Muniru A Asiru, Sep 25 2018
  • Mathematica
    a[n_] := Sum[Binomial[2 n-3 k + 1, n - k] k/(n - k + 1), {k, 1, n}]; Array[a, 50] (* or *) CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(Sqrt[1 - 4 x] (x^2 - x) + x^2 - 3 x + 2), {x, 0, 50}], x] (* Stefano Spezia, Sep 25 2018 *)
    RecurrenceTable[{n a[n] - (5 n - 6) a[n - 1] + 2 (2 n - 3) a[n - 2] + n a[n - 3] - 2 (2 n - 3) a[n - 4] + 3 (n - 2) == 0, a[0] == 0, a[1] == 1, a[2] == 3, a[3] == 6}, a, {n, 0, 30}] (* Bruno Berselli, Sep 26 2018 *)
  • Maxima
    a(n):=sum(binomial(2*n-3*k+1,n-k)*k/(n-k+1),k,1,n);
    
  • PARI
    x='x+O('x^40); concat(0, Vec((1-sqrt(1-4*x))/(sqrt(1-4*x)*(x^2-x)+x^2-3*x+2))) \\ Altug Alkan, Sep 25 2018
    

Formula

G.f.: (1 - sqrt(1 - 4*x))/(sqrt(1 - 4*x)*(x^2 - x) + x^2 - 3*x + 2).
a(n) ~ 2^(2*n + 4) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 26 2018
D-finite with recurrence: n*a(n) - (5*n - 6)*a(n-1) + 2*(2*n - 3)*a(n-2) + n*a(n-3) - 2*(2*n - 3)*a(n-4) + 3*(n - 2) = 0 for n > 3. - Bruno Berselli, Sep 26 2018