A319862
Triangle read by rows, 0 <= k <= n: T(n,k) is the denominator of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; numerator is A319861.
Original entry on oeis.org
1, 2, 2, 4, 2, 4, 8, 8, 8, 8, 16, 4, 8, 4, 16, 32, 32, 16, 16, 32, 32, 64, 32, 64, 16, 64, 32, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 32, 64, 32, 128, 32, 64, 32, 256, 512, 512, 128, 128, 256, 256, 128, 128, 512, 512, 1024, 512, 1024, 128, 512, 256, 512, 128, 1024, 512, 1024
Offset: 0
Triangle begins:
1;
2, 2;
4, 2, 4;
8, 8, 8, 8;
16, 4, 8, 4, 16;
32, 32, 16, 16, 32, 32;
64, 32, 64, 16, 64, 32, 64;
128, 128, 128, 128, 128, 128, 128, 128;
256, 32, 64, 32, 128, 32, 64, 32, 256;
512, 512, 128, 128, 256, 256, 128, 128, 512, 512;
...
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- American Mathematical Society, From Bézier to Bernstein
- Rita T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer Aided Geometric Design Vol. 29 (2012), 379-419.
- Ron Goldman, Pyramid Algorithms. A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufmann Publishers, 2002, Chap. 5.
- Eric Weisstein's World of Mathematics, Bernstein Polynomial
- Wikipedia, Bernstein polynomial
-
Flat(List([0..11],n->List([0..n],k->2^n/Gcd(Binomial(n,k),2^n)))); # Muniru A Asiru, Sep 30 2018
-
a:=(n,k)->2^n/gcd(binomial(n,k),2^n): seq(seq(a(n,k),k=0..n),n=0..11); # Muniru A Asiru, Sep 30 2018
-
T[n_, k_] = 2^n/GCD[Binomial[n, k], 2^n];
tabl[nn_] = TableForm[Table[T[n, k], {n, 0, nn}, {k, 0, n}]];
-
T(n, k) := 2^n/gcd(binomial(n, k), 2^n)$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
-
def A319862(n,k): return denominator(binomial(n,k)/2^n)
flatten([[A319862(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 20 2021
A320085
Triangle read by rows, 0 <= k <= n: T(n,k) is the numerator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; denominator is A320086.
Original entry on oeis.org
0, -1, 1, -1, 0, 1, -3, -3, 3, 3, -1, -1, 0, 1, 1, -5, -15, -5, 5, 15, 5, -3, -3, -15, 0, 15, 3, 3, -7, -35, -63, -35, 35, 63, 35, 7, -1, -3, -7, -7, 0, 7, 7, 3, 1, -9, -63, -45, -63, -63, 63, 63, 45, 63, 9, -5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5
Offset: 0
Triangle begins:
0;
-1, 1;
-1, 0, 1;
-3, -3, 3, 3;
-1, -1, 0, 1, 1;
-5, -15, -5, 5, 15, 5;
-3, -3, -15, 0, 15, 3, 3;
-7, -35, -63, -35, 35, 63, 35, 7;
-1, -3, -7, -7, 0, 7, 7, 3, 1;
-9, -63, -45, -63, -63, 63, 63, 45, 63, 9;
-5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5;
...
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Rita T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer Aided Geometric Design Vol. 29 (2012), 379-419.
- Ron Goldman, Pyramid Algorithms. A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufmann Publishers, 2002, Chap. 5.
- Eric Weisstein's World of Mathematics, Bernstein Polynomial
- Wikipedia, Bernstein polynomial
-
T:=proc(n,k) n*(binomial(n-1,k-1)-binomial(n-1,k))/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=0..11); # Muniru A Asiru, Oct 06 2018
-
Table[Numerator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
-
T(n, k) := n*(binomial(n - 1, k - 1) - binomial(n - 1, k))/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
-
def A320085(n,k): return numerator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
flatten([[A320085(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021
A320086
Triangle read by rows, 0 <= k <= n: T(n,k) is the denominator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; numerator is A320085.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 1, 2, 16, 16, 8, 8, 16, 16, 16, 4, 16, 1, 16, 4, 16, 64, 64, 64, 64, 64, 64, 64, 64, 16, 8, 8, 8, 1, 8, 8, 8, 16, 256, 256, 64, 64, 128, 128, 64, 64, 256, 256, 256, 32, 256, 16, 128, 1, 128, 16, 256, 32, 256
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
4, 4, 4, 4;
2, 1, 1, 1, 2;
16, 16, 8, 8, 16, 16;
16, 4, 16, 1, 16, 4, 16;
64, 64, 64, 64, 64, 64, 64, 64;
16, 8, 8, 8, 1, 8, 8, 8, 16;
256, 256, 64, 64, 128, 128, 64, 64, 256, 256;
256, 32, 256, 16, 128, 1, 128, 16, 256, 32, 256;
...
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Rita T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Computer Aided Geometric Design Vol. 29 (2012), 379-419.
- Ron Goldman, Pyramid Algorithms. A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufmann Publishers, 2002, Chap. 5.
- Eric Weisstein's World of Mathematics, Bernstein Polynomial
- Wikipedia, Bernstein polynomial
-
T:=proc(n,k) 2^(n-1)/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=1..11); # Muniru A Asiru, Oct 06 2018
-
Table[Denominator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
-
T(n, k) := 2^(n - 1)/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
-
def A320086(n,k): return denominator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
flatten([[A320086(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021
Showing 1-3 of 3 results.
Comments