A319869 a(n) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + ... + (up to the n-th term).
5, 20, 60, 120, 120, 130, 210, 840, 5160, 30360, 30375, 30570, 33090, 63120, 390720, 390740, 391100, 397560, 507000, 2251200, 2251225, 2251800, 2265000, 2554800, 8626800, 8626830, 8627670, 8651160, 9284520, 25727520, 25727555, 25728710, 25766790, 26984160
Offset: 1
Examples
a(1) = 5; a(2) = 5*4 = 20; a(3) = 5*4*3 = 60; a(4) = 5*4*3*2 = 120; a(5) = 5*4*3*2*1 = 120; a(6) = 5*4*3*2*1 + 10 = 130; a(7) = 5*4*3*2*1 + 10*9 = 210; a(8) = 5*4*3*2*1 + 10*9*8 = 840; a(9) = 5*4*3*2*1 + 10*9*8*7 = 5160; a(10) = 5*4*3*2*1 + 10*9*8*7*6 = 30360; a(11) = 5*4*3*2*1 + 10*9*8*7*6 + 15 = 30375; a(12) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14 = 30570; a(13) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13 = 33090; a(14) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12 = 63120; a(15) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 = 390720; a(16) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20 = 390740; a(17) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19 = 391100; a(18) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18 = 397560; a(19) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18*17 = 507000; a(20) = 5*4*3*2*1 + 10*9*8*7*6 + 15*14*13*12*11 + 20*19*18*17*16 = 2251200; etc.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
a:=(n,k)->add((floor((n-j)/k)-floor((n-j-1)/k))*(mul(n-i-j+k+1,i=1..j)),j=1..k-1) + add((floor(j/k)-floor((j-1)/k))*(mul(j-i+1,i=1..k)),j=1..n): seq(a(n,5),n=1..40); # Muniru A Asiru, Sep 30 2018
-
Mathematica
k:=5; a[n_]:=Sum[(Floor[(n-j)/k]-Floor[(n-j-1)/k])*Product[n-i-j+k+1, {i,1,j }] , {j,1,k-1}] + Sum[(Floor[j/k]-Floor[(j-1)/k])*Product[j-i+1, {i,1,k}], {j,1,n}]; Array[a, 50] (* Stefano Spezia, Sep 30 2018 *)
Comments