cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A320234 Expansion of Product_{k=1..8} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 58, 72, 96, 130, 164, 200, 268, 324, 376, 486, 552, 642, 796, 876, 992, 1198, 1294, 1436, 1682, 1794, 1964, 2268, 2428, 2556, 2980, 3116, 3304, 3876, 3940, 4252, 4896, 4996, 5348, 6164, 6260, 6668, 7686, 7808, 8120, 9378, 9490, 9762
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_8) to the equation a_1^2 + 2*a_2^2 + ... + 8*a_8^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), this sequence (m=8), A320241 (m=9), A320242(m=10), A320246 (m=12), A320247 (m=16).

A320231 Expansion of Product_{k=1..5} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 20, 20, 26, 38, 40, 48, 54, 60, 56, 80, 76, 60, 106, 76, 102, 132, 100, 128, 160, 174, 136, 210, 164, 164, 280, 160, 182, 256, 216, 232, 320, 204, 244, 408, 288, 288, 368, 316, 292, 518, 276, 264, 510, 310, 454, 480, 380, 408, 616, 524, 428, 656
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_5) to the equation a_1^2 + 2*a_2^2 + ... + 5*a_5^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), this sequence (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8).
Cf. A320067.

A320233 Expansion of Product_{k=1..7} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 34, 54, 68, 84, 114, 144, 156, 216, 256, 268, 350, 384, 414, 508, 564, 560, 686, 758, 736, 914, 966, 948, 1140, 1308, 1182, 1460, 1640, 1464, 1928, 2024, 1928, 2228, 2564, 2320, 2748, 3164, 2584, 3350, 3640, 3232, 3738, 4314, 3566, 4400
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_7) to the equation a_1^2 + 2*a_2^2 + ... + 7*a_7^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), this sequence (m=7), A320234 (m=8).
Cf. A320067.

A320241 Expansion of Product_{k=1..9} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 76, 100, 142, 180, 220, 312, 376, 448, 602, 696, 834, 1056, 1204, 1392, 1734, 1942, 2188, 2654, 2898, 3248, 3860, 4180, 4540, 5376, 5704, 6176, 7242, 7532, 8184, 9444, 9868, 10480, 12168, 12544, 13348, 15554, 15832, 16816, 19430
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_9) to the equation a_1^2 + 2*a_2^2 + ... + 9*a_9^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), this sequence (m=9), A320242 (m=10).
Cf. A320067.

A320242 Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 104, 146, 192, 236, 332, 420, 500, 674, 816, 986, 1256, 1488, 1752, 2174, 2566, 2940, 3550, 4102, 4640, 5528, 6292, 6948, 8160, 9172, 10060, 11618, 12840, 13980, 15940, 17590, 18844, 21252, 23308, 24772, 27926, 30360, 31932
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_10) to the equation a_1^2 + 2*a_2^2 + ... + 10*a_10^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), this sequence (m=10).
Cf. A320067.

A320246 Expansion of Product_{k=1..12} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 200, 252, 360, 456, 564, 770, 940, 1178, 1532, 1852, 2256, 2858, 3430, 4100, 5086, 5982, 7076, 8612, 10040, 11672, 13960, 16068, 18496, 21866, 24796, 28288, 32924, 37074, 41876, 48156, 53732, 60014, 68546, 75836, 83996
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_12) to the equation a_1^2 + 2*a_2^2 + ... + 12*a_12^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), A320242 (m=10), this sequence (m=12), A320247 (m=16).
Cf. A320067.

A320247 Expansion of Product_{k=1..16} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 202, 258, 370, 478, 600, 822, 1032, 1310, 1720, 2140, 2656, 3418, 4222, 5172, 6510, 7922, 9636, 11928, 14424, 17268, 21088, 25236, 29996, 36222, 42824, 50544, 60252, 70830, 82832, 97732, 113956, 132242, 154866, 179164, 206396
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_16) to the equation a_1^2 + 2*a_2^2 + ... + 16*a_16^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), A320242 (m=10), A320246 (m=12), this sequence (m=16).
Cf. A320067.

A320248 Expansion of Product_{k=1..24} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 202, 258, 370, 478, 602, 828, 1042, 1332, 1758, 2198, 2758, 3572, 4446, 5512, 7002, 8614, 10616, 13292, 16260, 19792, 24496, 29724, 35976, 44062, 52992, 63780, 77296, 92518, 110532, 132848, 158036, 187674, 224066, 264960
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_24) to the equation a_1^2 + 2*a_2^2 + ... + 24*a_24^2 = n.
a(24045) = 45676735553670596752038069309732400 and a(24046) = 45676724028345437854371347712212432. So a(24045) > a(24046).

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), A320242 (m=10), A320246 (m=12), A320247 (m=16), this sequence (m=24).
Cf. A320067.
Showing 1-8 of 8 results.