A320525 Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1
Examples
Triangle begins with T(1,1): 0; 0, 0; 0, 1, 0; 0, 2, 2, 0; 0, 6, 10, 4, 0; 0, 12, 40, 28, 6, 0; 0, 28, 141, 167, 64, 9, 0; 0, 56, 464, 824, 508, 124, 12, 0; 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0; 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0; 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0; 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0; ... For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Crossrefs
Programs
-
Mathematica
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *) Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
-
PARI
\\ here Ach is A304972 as square matrix. Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M} T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2} { my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
Comments