cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320567 Expansion of e.g.f. exp(x) * Product_{k>=1} (1 + x^k/k!).

Original entry on oeis.org

1, 2, 4, 11, 32, 97, 355, 1423, 5696, 23141, 108149, 559693, 2913971, 14806365, 75692999, 432849976, 2780749376, 18237870285, 115493756737, 708062095921, 4354275076517, 29539724932771, 227955214198529, 1836106089485736, 14279737884301139, 105409744347318897
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

Binomial transform of A007837.

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x)*mul(1+x^k/factorial(k),k=1..n),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 15 2018
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))
        end:
    a:= n-> add(b(n-i)*binomial(n, i), i=0..n):
    seq(a(n), n=0..27);  # Alois P. Heinz, Sep 27 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[x] Product[(1 + x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 25; CoefficientList[Series[Exp[x + Sum[Sum[(-1)^(k + 1) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A007837(k).