cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320566 Expansion of e.g.f. exp(x) * Product_{k>=1} 1/(1 - x^k/k!).

Original entry on oeis.org

1, 2, 6, 23, 110, 617, 4035, 29927, 249926, 2316317, 23674841, 264329177, 3207278255, 42011308653, 591460307157, 8905905152798, 142897741683846, 2433947385964373, 43873382718719949, 834402502632550589, 16699964488044322205, 350869837371828862607, 7721899536993122262447
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

Binomial transform of A005651.

Crossrefs

Row sums of A327801.

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x)*mul((1-x^k/factorial(k))^(-1),k=1..n),x,n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x] Product[1/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[x + Sum[Sum[x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 22}]

Formula

E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A005651(k).
a(n) ~ exp(1) * A247551 * n!. - Vaclav Kotesovec, Jul 21 2019

A332024 E.g.f.: Product_{k>=1} (1 + x^k/(k!*(1 - x)^k)).

Original entry on oeis.org

1, 1, 3, 16, 113, 956, 9382, 105253, 1334517, 18904936, 295787126, 5056826039, 93594929738, 1861321879535, 39536014577711, 892763601542509, 21352130132268541, 539243894127067888, 14342761454293102006, 400830115867761118963, 11743833994363640228070
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 + x^k/(k! (1 - x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(prod(k=1, n, (1 + x^k/(k!*(1 - x)^k)) + O(x*x^n))))} \\ Andrew Howroyd, Feb 13 2020

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * A007837(k) * n! / k!.
Showing 1-2 of 2 results.