cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A247551 Decimal expansion of Product_{k>=2} 1/(1-1/k!).

Original entry on oeis.org

2, 5, 2, 9, 4, 7, 7, 4, 7, 2, 0, 7, 9, 1, 5, 2, 6, 4, 8, 1, 8, 0, 1, 1, 6, 1, 5, 4, 2, 5, 3, 9, 5, 4, 2, 4, 1, 1, 7, 8, 7, 0, 2, 3, 9, 4, 8, 4, 5, 9, 9, 7, 3, 3, 7, 5, 8, 4, 9, 3, 4, 9, 8, 2, 5, 0, 0, 2, 1, 1, 8, 7, 8, 0, 0, 8, 6, 6, 9, 9, 1, 2, 1, 9, 9, 8, 8, 3, 6, 4, 6, 2, 5, 2, 6, 1, 4, 9, 5, 5, 1, 6, 4, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 19 2014

Keywords

Examples

			2.5294774720791526481801161542539542411787023948459973375849349825...
		

Crossrefs

Programs

  • Maple
    evalf(1/product(1-1/k!,k=2..infinity),100); # Vaclav Kotesovec, Sep 19 2014
  • Mathematica
    digits = 105;
    RealDigits[NProduct[1/(1-1/k!), {k, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> digits], 10, digits][[1]] (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    default(realprecision,150); 1/prodinf(k=2,1 - 1/k!) \\ Vaclav Kotesovec, Sep 21 2014

Formula

Product_{k>=2} 1/(1-1/k!).
Equals lim_{n -> oo} A005651(n) / n!.
Equals 1/A282529. - Amiram Eldar, Sep 15 2023

A327801 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 47, 40, 18, 4, 1, 246, 235, 100, 30, 5, 1, 1602, 1476, 705, 200, 45, 6, 1, 11481, 11214, 5166, 1645, 350, 63, 7, 1, 95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1, 871030, 859527, 413316, 134568, 30996, 5922, 840, 108, 9, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2019

Keywords

Comments

Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.

Examples

			Triangle T(n,k) begins:
      1;
      1,     1;
      3,     2,     1;
     10,     9,     3,     1;
     47,    40,    18,     4,    1;
    246,   235,   100,    30,    5,   1;
   1602,  1476,   705,   200,   45,   6,  1;
  11481, 11214,  5166,  1645,  350,  63,  7, 1;
  95503, 91848, 44856, 13776, 3290, 560, 84, 8, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A005651, A327827, A327828.
Row sums give A320566.
T(2n,n) gives A266518.
T(n,n-1) gives A001477.
T(n+1,n-1) gives A045943.
Cf. A327869.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0), l=
                 select(x-> k=0 or k in x, partition(n))):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<2, 0, b(n, i-1, `if`(i=k, 0, k)))+
          `if`(i=k, 0, b(n-i, min(n-i, i), k)/i!))
        end:
    T:= (n, k)-> n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i], k]/i!]];
    T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, from 2nd Maple program *)

A320567 Expansion of e.g.f. exp(x) * Product_{k>=1} (1 + x^k/k!).

Original entry on oeis.org

1, 2, 4, 11, 32, 97, 355, 1423, 5696, 23141, 108149, 559693, 2913971, 14806365, 75692999, 432849976, 2780749376, 18237870285, 115493756737, 708062095921, 4354275076517, 29539724932771, 227955214198529, 1836106089485736, 14279737884301139, 105409744347318897
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

Binomial transform of A007837.

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x)*mul(1+x^k/factorial(k),k=1..n),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 15 2018
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
           d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))
        end:
    a:= n-> add(b(n-i)*binomial(n, i), i=0..n):
    seq(a(n), n=0..27);  # Alois P. Heinz, Sep 27 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[x] Product[(1 + x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 25; CoefficientList[Series[Exp[x + Sum[Sum[(-1)^(k + 1) x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A007837(k).

A327870 Row sums of A327869.

Original entry on oeis.org

1, 2, 2, 11, 14, 47, 305, 611, 2070, 8831, 84077, 204371, 944333, 3850407, 23991739, 297448526, 927586630, 4775902567, 24534836837, 141681919871, 1080484165089, 18553632475991, 66762080435239, 415657332495526, 2298883231736949, 15799818116227747
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Crossrefs

Row sums of A327869.
Cf. A320566.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n$2, 0)*(n+1) -add(b(n$2, k), k=1..n):
    seq(a(n), n=0..28);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i*(i + 1)/2 < n, 0,
         If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] +
         If[i == k, 0, b[n - i, Min[n - i, i - 1], k]*Binomial[n, i]]]];
    a[n_] := b[n, n, 0]*(n + 1) - Sum[b[n, n, k], {k, 1, n}];
    Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Mar 28 2022, after Alois P. Heinz *)

A330649 E.g.f.: Product_{k>=1} 1 / (1 - x^k/(k!*(1 - x)^k)).

Original entry on oeis.org

1, 1, 5, 34, 299, 3226, 41202, 607545, 10153831, 189628750, 3913009178, 88406043991, 2170372901534, 57531498837515, 1637713270797411, 49830222530823615, 1613950394999111903, 55444724259894089718, 2013760368429942861810, 77105255895256112519259
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[Product[1/(1 - x^k/(k! (1 - x)^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n - 1, k - 1] Total[Apply[Multinomial, IntegerPartitions[k], {1}]] n!/k!, {k, 0, n}], {n, 0, 19}]
  • PARI
    seq(n)={Vec(serlaplace(prod(k=1, n, 1 / (1 - x^k/(k!*(1 - x)^k)) + O(x*x^n))))} \\ Andrew Howroyd, Feb 13 2020

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * A005651(k) * n! / k!.
a(n) ~ c * 2^(n-1) * n!, where c = A247551 = 2.52947747207915264818... - Vaclav Kotesovec, Feb 16 2020
Showing 1-5 of 5 results.