cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327869 Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Comments

Here we assume that every list of parts has at least one 0 because its addition does not change the value of the multinomial.
Number T(n,k) of set partitions of [n] with distinct block sizes and one of the block sizes is k. T(5,3) = 10: 123|45, 124|35, 125|34, 12|345, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234.

Examples

			Triangle T(n,k) begins:
      1;
      1,     1;
      1,     0,     1;
      4,     3,     3,     1;
      5,     4,     0,     4,     1;
     16,     5,    10,    10,     5,    1;
     82,    66,    75,    60,    15,    6,    1;
    169,   112,   126,    35,   140,   21,    7,   1;
    541,   456,   196,   336,   280,  224,   28,   8,  1;
   2272,   765,  1548,  1848,  1386,  630,  336,  36,  9,  1;
  17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A007837, A327876, A327881, A328155.
Row sums give A327870.
T(2n,n) gives A328156.

Programs

  • Maple
    with(combinat):
    T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),
                 l=select(x-> nops(x)=nops({x[]}) and
                 (k=0 or k in x), partition(n))):
    seq(seq(T(n, k), k=0..n), n=0..11);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, 1, If[i<2, 0, b[n, i-1, If[i==k, 0, k]]] + If[i==k, 0, b[n-i, Min[n-i, i-1], k]/i!]]];
    T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, from 2nd Maple program *)

A320566 Expansion of e.g.f. exp(x) * Product_{k>=1} 1/(1 - x^k/k!).

Original entry on oeis.org

1, 2, 6, 23, 110, 617, 4035, 29927, 249926, 2316317, 23674841, 264329177, 3207278255, 42011308653, 591460307157, 8905905152798, 142897741683846, 2433947385964373, 43873382718719949, 834402502632550589, 16699964488044322205, 350869837371828862607, 7721899536993122262447
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 15 2018

Keywords

Comments

Binomial transform of A005651.

Crossrefs

Row sums of A327801.

Programs

  • Maple
    seq(coeff(series(factorial(n)*exp(x)*mul((1-x^k/factorial(k))^(-1),k=1..n),x,n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[x] Product[1/(1 - x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[x + Sum[Sum[x^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Binomial[n, k] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 22}]

Formula

E.g.f.: exp(x + Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} binomial(n,k)*A005651(k).
a(n) ~ exp(1) * A247551 * n!. - Vaclav Kotesovec, Jul 21 2019
Showing 1-2 of 2 results.