cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320940 a(n) = Sum_{d|n} d*sigma_n(d).

Original entry on oeis.org

1, 11, 85, 1127, 15631, 287021, 5764809, 135007759, 3487020610, 100146496681, 3138428376733, 107032667155169, 3937376385699303, 155582338242604221, 6568408966322733475, 295154660699054931999, 14063084452067724991027, 708239400347943609329270
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2018

Keywords

Examples

			a(6) = 1*sigma_6(1)+2*sigma_6(2)+3*sigma_6(3)+6*sigma_6(6) = 1+2*65+3*730+6*47450 = 287021.
		

Crossrefs

Programs

  • Magma
    [&+[d*DivisorSigma(n,d):d in Divisors(n)]:n in [1..18]]; // Marius A. Burtea, Feb 15 2020
  • Maple
    with(numtheory): seq(coeff(series(n*(-log(mul((1-x^k)^sigma[n](k),k=1..n))),x,n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[Sum[d DivisorSigma[n, d], {d, Divisors[n]}] , {n, 18}]
    Table[n SeriesCoefficient[-Log[Product[(1 - x^k)^DivisorSigma[n, k], {k, 1, n}]], {x, 0, n}], {n, 18}]
  • PARI
    a(n) = sumdiv(n, d, d*sigma(d, n)); \\ Michel Marcus, Oct 28 2018
    
  • Python
    from sympy import divisor_sigma, divisors
    def A320940(n):
        return sum(divisor_sigma(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
    

Formula

a(n) = n * [x^n] -log(Product_{k>=1} (1 - x^k)^sigma_n(k)).
a(n) = Sum_{d|n} d^(n+1)*sigma_1(n/d).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Feb 16 2020