A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.
1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Programs
-
Mathematica
With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018
Formula
Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).