cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Self-convolution of A320968.

Programs

  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018

Formula

Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).