cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321233 a(n) is the number of reflectable bases of the root system of type D_n.

Original entry on oeis.org

0, 4, 128, 4992, 241664, 14131200, 972521472, 77138231296, 6935178903552, 697359579217920, 77576992194560000, 9461629052252061696, 1255632936007234486272, 180144800985155488448512, 27786422394606966747955200, 4585649599904345055716966400, 806288164205933489807717040128
Offset: 1

Views

Author

Masaya Tomie, Nov 01 2018

Keywords

Comments

The root systems of type D_n are only defined for n >= 4. See chapter 3 of the Humphreys reference. Sequence extended to n=1 using formula/recurrence.

References

  • J. E. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed, Springer-Verlag, New York, 1972.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[ (&+[ j^(j-1)*(4*x)^j/Factorial(j) :j in [1..m+3]])^k/(4*k) :k in [2..m+2]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 09 2018
    
  • Mathematica
    Rest[With[{m = 25}, CoefficientList[Series[Sum[Sum[j^(j - 1)*(4*x)^j/j!, {j, 1, m + 1}]^k/(4*k), {k, 2, m}], {x, 0, m}], x]*Range[0, m]!]] (* G. C. Greubel, Dec 09 2018 *)
  • PARI
    a(n)={n!*polcoef(sum(m=2, n, (sum(k=1, n, k^(k-1)*(4*x)^k/k!) + O(x^(n-m+2)))^m/(4*m)), n)} \\ Andrew Howroyd, Nov 01 2018
    
  • PARI
    A321233(n)=A001863(n)*(n-1)*4^(n-1) \\ M. F. Hasler, Dec 09 2018
    
  • Python
    from math import comb
    def A321233(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<<(n-1<<1) # Chai Wah Wu, Apr 26 2023

Formula

E.g.f.: Sum_{m>=2} (1/(4*m)) (Sum_{k>=1} k^(k-1)*(4*x)^k/k!)^m.
a(n) = 2^n*A320064(n).
a(n) = (n-1)*4^(n-1)*A001863(n). - M. F. Hasler, Dec 09 2018