A321290 Smallest positive number for which the 3rd power cannot be written as sum of 3rd powers of any subset of previous terms.
1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 17, 21, 22, 28, 29, 33, 38, 41, 48, 68, 70, 96, 124, 130, 158, 179, 239, 309, 310, 351, 468, 509, 640, 843, 900, 1251, 1576, 1640, 2305, 2444, 2989, 3410, 4575, 5758, 5998, 7490, 8602, 11657, 13017, 15553, 19150, 24411, 25365
Offset: 1
Keywords
Examples
a(10) = 13. 3rd powers of 14, 15 and 16 can be written as sums of 3rd powers of a subset of the terms {a(1)..a(10)}: 14^3 = 2^3 + 3^3 + 8^3 + 13^3, 15^3 = 4^3 + 5^3 + 7^3 + 8^3 + 10^3 + 11^3, 16^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 7^3 + 11^3 + 13^3, 17^3 cannot be written in this way, so a(11) = 17 is the next term.
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..100
- Wikipedia, Sum-free sequence
Programs
-
Python
def findSum(nopt, tgt, a, smax, pwr): if nopt==0: return [] if tgt==0 else None if tgt<0 or tgt>smax[nopt-1]: return None rv=findSum(nopt-1, tgt - a[nopt-1]**pwr, a, smax, pwr) if rv!=None: rv.append(a[nopt-1]) else: rv=findSum(nopt-1, tgt, a, smax, pwr) return rv def A321290(n): POWER=3 ; x=0 ; a=[] ; smax=[] ; sumpwr=0 while len(a)
Comments