cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321349 a(n) = Sum_{d|n} phi(d^n), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 3, 19, 137, 2501, 16071, 705895, 8421505, 258293449, 4007813013, 259374246011, 2972767821815, 279577021469773, 4762869973595499, 233543432626753439, 9223512776490647553, 778579070010669895697, 13115569455375954492093, 1874292305362402347591139
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d^n], {d, Divisors[n]}], {n, 19}]
    nmax = 19; Rest[CoefficientList[Series[Sum[k^(k - 1) EulerPhi[k] x^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(n/GCD[n, k])^(n - 1), {k, n}], {n, 19}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d^n)); \\ Michel Marcus, Nov 06 2018

Formula

G.f.: Sum_{k>=1} k^(k-1)*phi(k)*x^k/(1 - (k*x)^k).
a(n) = Sum_{d|n} d^(n-1)*phi(d).
a(n) = Sum_{k=1..n} (n/gcd(n,k))^(n-1).
From Richard L. Ollerton, May 08 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)^n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^(n-1)*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)