cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321501 Numbers not of the form (x - y)(x^2 - y^2) with x > y > 0; complement of A321499.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 12, 14, 18, 20, 22, 26, 28, 30, 34, 36, 38, 42, 44, 46, 50, 52, 54, 58, 60, 62, 66, 68, 70, 74, 76, 78, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 114, 116, 118, 122, 124, 126, 130, 132, 134, 138, 140, 142, 146, 148, 150, 154, 156, 158, 162, 164, 166, 170, 172, 174, 178
Offset: 1

Views

Author

M. F. Hasler, Nov 22 2018

Keywords

Comments

Equivalently, numbers not of the form (x - y)^2*(x + y) or d^2*(2m + d), for (x, y) = (m+d, m). This shows that excluded are all squares d^2 > 0 times any number of the same parity and larger than d. In particular, for d=1, all odd numbers > 1, and for d=2, 4*(even numbers > 4) = 8*(odd numbers > 2). For larger d, no further (neither odd nor even) numbers are excluded.
So apart from 0, 1 and 8, this consists of even numbers not multiple of 8. All these numbers occur, since for larger (odd or even) d, no additional term is excluded.

Examples

			a(1) = 0, a(2) = 1 and a(3) = 2 obviously can't be of the form (x - y)(x^2 - y^2) with x > y > 0, which is necessarily greater than 1*3 = 3.
See A321499 for examples of the terms that are not in the sequence.
		

Crossrefs

See A321499 for the complement: numbers of the form (x-y)(x^2-y^2).
See A321491 for numbers of the form (x+y)(x^2+y^2).

Programs

  • PARI
    is(n)={!n||!fordiv(n,d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d,0)||return)} \\ Uses the initial definition. More efficient variant below:
    
  • PARI
    select( is_A321501(n)=!bittest(n,0)&&(n%8||n<9)||n<3, [0..99]) \\ Defines the function is_A321501(). The select() command is an illustration and a check.
    
  • PARI
    A321501_list(M)={setunion([1],setminus([0..M\2]*2,[2..M\8]*8))} \\ Return all terms up to M; more efficient than to use select(...,[0..M]) as above.
    
  • PARI
    A321501(n)=if(n>6,(n-2)*9\/8*2,n>3,n*2-4,n-1)

Formula

Asymptotic density is 3/8.
a(n) = round((n-2)*9/8)*2 for all n > 6.

A106505 Ordered and uniqued length of side common to the two angles, one being the double of the other, of a primitive integer-sided triangle.

Original entry on oeis.org

5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 101, 103, 104, 105, 107, 109, 111, 112
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2005

Keywords

Comments

The terms are proposed without repetition. For example, there exist two such triangles with a length of side = 33. They correspond respectively to s^2 - r^2 = 33 (see formula) with (r, s) = (4, 7) and sides (33, 28, 16), and the other triangle with (r, s) = (16, 17) and sides (33, 272, 256). Lengths = 39, 51, 57, 69, 75, ... correspond to two distinct triangles ... The lengths of these sides are proposed with repetition in A343064. - Bernard Schott, Apr 22 2021

Crossrefs

Formula

Values s^2 - r^2, where r
Conjecture: for n>2, a(n+5) = a(n) + 8. - Ralf Stephan, Nov 16 2010.
Empirical g.f.: -x*(x^7+x^6+3*x^5-2*x^4-2*x^3-2*x^2-2*x-5) / ((x-1)^2*(x^4+x^3+x^2+x+1)). - Colin Barker, Oct 05 2013

Extensions

Extended by Ray Chandler, May 09 2005

A321498 Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.

Original entry on oeis.org

45, 63, 81, 96, 99, 117, 128, 135, 153, 160, 171, 175, 189, 192, 207, 224, 225, 243, 256, 261, 275, 279, 288, 297, 315, 320, 325, 333, 351, 352, 360, 369, 375, 384, 387, 405, 416, 423, 425, 432, 441, 448, 459, 475, 477, 480, 495, 504, 512, 513, 525, 531, 539, 544, 549, 567, 575, 576, 585
Offset: 1

Author

Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018

Keywords

Comments

An equivalent form is (x - y)^2*(x + y), or d^2*(d + 2y), where d = x - y > 0 and y > 0. See also A321499.

Examples

			   45 = (4 - 1)*(4^2 - 1^2) = (23 - 22)*(23^2 - 22^2),
   63 = (5 - 2)*(5^2 - 2^2) = (32 - 31)*(32^2 - 31^2),
   81 = (6 - 3)*(6^2 - 3^2) = (41 - 40)*(41^2 - 40^2),
   96 = (5 - 1)*(5^2 - 1^2) = (13 - 11)*(13^2 - 11^2),
   99 = (7 - 4)*(7^2 - 4^2) = (50 - 49)*(50^2 - 49^2),
  117 = (8 - 5)*(8^2 - 5^2) = (59 - 58)*(59^2 - 58^2).
		

Crossrefs

Cf. A321499.

Programs

  • Mathematica
    aQ[n_] := Length[Solve[(x-y)*(x^2-y^2) ==n && x > y && y > 0, {x,y}, Integers]] > 1; Select[Range[600], aQ] (* Amiram Eldar, Dec 06 2018 *)
  • PARI
    select( is_A321498(n,c=2)={n&&!issquarefree(n)&&fordiv(n, d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d, 0)||c--||return(1))}, [0..999]) \\ Define the function is_A321498(). \\ ~30% speed up by David A. Corneth, Nov 23 2018
    
  • PARI
    is(n) = {if(issquarefree(n), return(0)); if(n % 2 == 0, if(n % 8 == 0, n\=8, return(0))); f = factor(n); e = select(x -> x > 1, f[, 2], 1); if(#e == 0 || n == 1, return(0), k = e[1]); n > f[k, 1]^3} \\ David A. Corneth, Dec 01 2018
Showing 1-3 of 3 results.