cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321849 Expansion of e.g.f.: exp(x/(1-6*x)).

Original entry on oeis.org

1, 1, 13, 253, 6553, 211801, 8201701, 369979093, 19047250993, 1101705494833, 70715424362941, 4987040544656941, 383243311962126793, 31871863566298601353, 2851588139929576342933, 273093945561709965890821, 27871997808801906673665121
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Comments

For k = 2,3,4,... the difference a(n+k) - a(n) is divisible by k.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-6*x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 08 2018
    
  • Magma
    [1] cat [&+[6^(n-k)* Factorial(n)/Factorial(k)*Binomial(n-1, k-1):  k in [0..n]]: n in [1.. 18]]; // Vincenzo Librandi, Dec 08 2018
  • Maple
    seq(coeff(series(factorial(n)*exp(x/(1-6*x)),x,n+1), x, n), n = 0 .. 17); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[6^(n - k)*n!/k!*Binomial[n - 1, k - 1], {k, 0, n}]; Array[a, 20, 0] (* or *) a[0] = a[1] = 1; a[n_] := a[n] = (12n - 11)*a[n - 1] - 36(n - 2)(n - 1)*a[n - 2]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
  • PARI
    my(x='x + O('x^20)); Vec(serlaplace(exp(x/(1-6*x)))) \\ Michel Marcus, Nov 25 2018
    
  • Sage
    f= exp(x/(1-6*x))
    g=f.taylor(x,0,13)
    L=g.coefficients()
    coeffs={c[1]:c[0]*factorial(c[1]) for c in L}
    coeffs  # G. C. Greubel, Dec 08 2018
    

Formula

a(n) = Sum_{k=0..n} 6^(n-k)*(n!/k!)*binomial(n-1, k-1).
Recurrence: a(n) = (12*n-11)*a(n-1) - 36*(n-2)*(n-1)*a(n-2).
a(n) ~ n! * exp(sqrt(2*n/3) - 1/12) * 6^(n - 1/4) / (2 * sqrt(Pi) * n^(3/4)). - Vaclav Kotesovec, Nov 21 2018