A322070 Number of permutations f of {1,...,n} with f(1) < f(n) such that Sum_{k=1..n-1} 1/(f(k)+f(k+1)) = 1.
0, 0, 0, 0, 0, 0, 1, 8, 22, 98, 844, 3831, 20922, 88902, 358253
Offset: 1
Examples
a(7) = 1, and for the permutation (4,5,7,2,1,3,6) of {1,...,7} we have 1/(4+5) + 1/(5+7) + 1/(7+2) + 1/(2+1) + 1/(1+3) + 1/(3+6) = 1.
Links
- Zhi-Wei Sun, On permutations of {1, ..., n} and related topics, arXiv:1811.10503 [math.CO], 2018.
Crossrefs
Cf. A322069.
Programs
-
Mathematica
V[n_]:=V[n]=Permutations[Table[i,{i,1,n}]]; Do[r=0;Do[If[Part[V[n],k][[1]]>=Part[V[n],k][[n]]||Sum[1/(Part[V[n],k][[i]]+Part[V[n],k][[i+1]]),{i,1,n-1}]!=1,Goto[aa]];r=r+1;Label[aa],{k,1,n!}];Print[n," ",r],{n,1,11}]
Extensions
a(12)-a(15) from Hugo Pfoertner, Aug 20 2022
Comments