cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322078 a(n) = n^2 * Sum_{p|n, p prime} 1/p^2.

Original entry on oeis.org

0, 1, 1, 4, 1, 13, 1, 16, 9, 29, 1, 52, 1, 53, 34, 64, 1, 117, 1, 116, 58, 125, 1, 208, 25, 173, 81, 212, 1, 361, 1, 256, 130, 293, 74, 468, 1, 365, 178, 464, 1, 673, 1, 500, 306, 533, 1, 832, 49, 725, 298, 692, 1, 1053, 146, 848, 370, 845, 1, 1444, 1, 965, 522
Offset: 1

Views

Author

Daniel Suteu, Nov 25 2018

Keywords

Comments

Generalized formula is f(n,m) = n^m * Sum_{p|n} 1/p^m, where f(n,0) = A001221(n) and f(n,1) = A069359(n).
Dirichlet convolution of A010051(n) and n^2. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(40) = 464 because the prime factors of 40 are 2 and 5, so we have 40^2 * (1/2^2 + 1/5^2) = 464.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), this sequence (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

Programs

  • Magma
    [0] cat [n^2*&+[1/p^2:p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 10 2019
  • Maple
    a:= n-> n^2*add(1/i[1]^2, i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Oct 11 2019
  • Mathematica
    f[p_, e_] := 1/p^2; a[n_] := If[n==1, 0, n^2*Plus@@f@@@FactorInteger[n]]; Array[a, 60] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    a(n) = my(f=factor(n)[,1]~); sum(k=1, #f, n^2\f[k]^2);
    

Formula

Sum_{k=1..n} a(k) ~ A085541 * A000330(n).
G.f.: Sum_{k>=1} x^prime(k) * (1 + x^prime(k)) / (1 - x^prime(k))^3. - Ilya Gutkovskiy, Oct 10 2019
a(n) = 1 <=> n is prime. _Alois P. Heinz, Oct 11 2019
Dirichlet g.f.: zeta(s-2)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^2/n^s) Sum_{p|n} 1/p^2. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^2*(p*j)^(s-2)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-2) = zeta(s-2)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 02 2023
a(n) = Sum_{d|n} A007434(d)*A001221(n/d). - Ridouane Oudra, Jul 13 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^2, where c = A010051.
a(p^k) = p^(2*k-2) for p prime and k>=1. (End)