A322078 a(n) = n^2 * Sum_{p|n, p prime} 1/p^2.
0, 1, 1, 4, 1, 13, 1, 16, 9, 29, 1, 52, 1, 53, 34, 64, 1, 117, 1, 116, 58, 125, 1, 208, 25, 173, 81, 212, 1, 361, 1, 256, 130, 293, 74, 468, 1, 365, 178, 464, 1, 673, 1, 500, 306, 533, 1, 832, 49, 725, 298, 692, 1, 1053, 146, 848, 370, 845, 1, 1444, 1, 965, 522
Offset: 1
Keywords
Examples
a(40) = 464 because the prime factors of 40 are 2 and 5, so we have 40^2 * (1/2^2 + 1/5^2) = 464.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[0] cat [n^2*&+[1/p^2:p in PrimeDivisors(n)]:n in [2..70]]; // Marius A. Burtea, Oct 10 2019
-
Maple
a:= n-> n^2*add(1/i[1]^2, i=ifactors(n)[2]): seq(a(n), n=1..70); # Alois P. Heinz, Oct 11 2019
-
Mathematica
f[p_, e_] := 1/p^2; a[n_] := If[n==1, 0, n^2*Plus@@f@@@FactorInteger[n]]; Array[a, 60] (* Amiram Eldar, Nov 26 2018 *)
-
PARI
a(n) = my(f=factor(n)[,1]~); sum(k=1, #f, n^2\f[k]^2);
Formula
G.f.: Sum_{k>=1} x^prime(k) * (1 + x^prime(k)) / (1 - x^prime(k))^3. - Ilya Gutkovskiy, Oct 10 2019
a(n) = 1 <=> n is prime. _Alois P. Heinz, Oct 11 2019
Dirichlet g.f.: zeta(s-2)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^2/n^s) Sum_{p|n} 1/p^2. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^2*(p*j)^(s-2)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-2) = zeta(s-2)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 02 2023
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^2, where c = A010051.
a(p^k) = p^(2*k-2) for p prime and k>=1. (End)
Comments