cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A324153 Digits of one of the four 13-adic integers 3^(1/4) that is congruent to 11 mod 13.

Original entry on oeis.org

11, 10, 5, 11, 0, 6, 0, 8, 4, 6, 11, 2, 8, 6, 5, 4, 2, 11, 0, 3, 3, 5, 12, 0, 9, 6, 8, 7, 1, 0, 9, 1, 3, 7, 4, 8, 8, 10, 5, 8, 1, 4, 8, 2, 11, 12, 10, 11, 8, 9, 1, 5, 9, 6, 9, 10, 6, 5, 9, 6, 11, 12, 9, 12, 1, 4, 1, 6, 1, 12, 9, 7, 8, 5, 3, 2, 0, 6, 1, 7, 11
Offset: 0

Views

Author

Jianing Song, Sep 01 2019

Keywords

Comments

One of the two square roots of A322087, where an A-number represents a 13-adic number. The other square root is A324085.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.

Examples

			The unique number k in [1, 13^3] and congruent to 11 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 986 = (5AB)_13, so the first three terms are 11, 10 and 5.
		

Crossrefs

Programs

  • Maple
    R:= select(t -> op([1,3,1],t)=11, [padic:-rootp(x^4-3, 13,101)]):
    op([1,1,3],R); # Robert Israel, Sep 08 2019
  • PARI
    a(n) = lift(-sqrtn(3+O(13^(n+1)), 4) * sqrt(-1+O(13^(n+1))))\13^n

Formula

a(n) = (A324084(n+1) - A324084(n))/13^n.
For n > 0, a(n) = 12 - A324085(n).

A324085 Digits of one of the four 3-adic integers 3^(1/4) that is congruent to 2 mod 13.

Original entry on oeis.org

2, 2, 7, 1, 12, 6, 12, 4, 8, 6, 1, 10, 4, 6, 7, 8, 10, 1, 12, 9, 9, 7, 0, 12, 3, 6, 4, 5, 11, 12, 3, 11, 9, 5, 8, 4, 4, 2, 7, 4, 11, 8, 4, 10, 1, 0, 2, 1, 4, 3, 11, 7, 3, 6, 3, 2, 6, 7, 3, 6, 1, 0, 3, 0, 11, 8, 11, 6, 11, 0, 3, 5, 4, 7, 9, 10, 12, 6, 11, 5, 1
Offset: 0

Views

Author

Jianing Song, Sep 01 2019

Keywords

Comments

One of the two square roots of A322087, where an A-number represents a 13-adic number. The other square root is A324153.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.

Examples

			The unique number k in [1, 13^3] and congruent to 2 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 1211 = (722)_13, so the first three terms are 2, 7 and 7.
		

Crossrefs

Programs

  • PARI
    a(n) = lift(sqrtn(3+O(13^(n+1)), 4) * sqrt(-1+O(13^(n+1))))\13^n

Formula

a(n) = (A324077(n+1) - A324077(n))/13^n.
For n > 0, a(n) = 12 - A324153(n).

A324086 Digits of one of the four 3-adic integers 3^(1/4) that is congruent to 3 mod 13.

Original entry on oeis.org

3, 5, 3, 6, 5, 12, 10, 2, 12, 12, 8, 12, 11, 7, 0, 2, 5, 11, 11, 3, 5, 11, 5, 4, 12, 12, 3, 2, 7, 7, 12, 11, 8, 5, 12, 3, 5, 8, 6, 12, 9, 4, 0, 5, 5, 12, 1, 9, 1, 9, 11, 7, 4, 0, 3, 9, 0, 12, 6, 6, 1, 8, 4, 9, 5, 6, 9, 5, 7, 10, 1, 3, 3, 8, 5, 11, 8, 2, 0, 1, 12
Offset: 0

Views

Author

Jianing Song, Sep 01 2019

Keywords

Comments

One of the two square roots of A322088, where an A-number represents a 13-adic number. The other square root is A324087.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.

Examples

			The unique number k in [1, 13^3] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 575 = (353)_13, so the first three terms are 3, 5 and 3.
		

Crossrefs

Programs

  • PARI
    a(n) = lift(sqrtn(3+O(13^(n+1)), 4))\13^n

Formula

a(n) = (A324082(n+1) - A324082(n))/13^n.
For n > 0, a(n) = 12 - A324087(n).

A324087 Digits of one of the four 3-adic integers 3^(1/4) that is congruent to 10 mod 13.

Original entry on oeis.org

10, 7, 9, 6, 7, 0, 2, 10, 0, 0, 4, 0, 1, 5, 12, 10, 7, 1, 1, 9, 7, 1, 7, 8, 0, 0, 9, 10, 5, 5, 0, 1, 4, 7, 0, 9, 7, 4, 6, 0, 3, 8, 12, 7, 7, 0, 11, 3, 11, 3, 1, 5, 8, 12, 9, 3, 12, 0, 6, 6, 11, 4, 8, 3, 7, 6, 3, 7, 5, 2, 11, 9, 9, 4, 7, 1, 4, 10, 12, 11, 0
Offset: 0

Views

Author

Jianing Song, Sep 01 2019

Keywords

Comments

One of the two square roots of A322088, where an A-number represents a 13-adic number. The other square root is A324086.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.

Examples

			The unique number k in [1, 13^3] and congruent to 10 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 1622 = (97A)_13, so the first three terms are 10, 7 and 9.
		

Crossrefs

Programs

  • PARI
    a(n) = lift(-sqrtn(3+O(13^(n+1)), 4))\13^n

Formula

a(n) = (A324083(n+1) - A324083(n))/13^n.
For n > 0, a(n) = 12 - A324086(n).

A322088 Digits of one of the two 13-adic integers sqrt(3).

Original entry on oeis.org

9, 4, 6, 4, 0, 10, 11, 3, 3, 2, 11, 6, 8, 2, 6, 1, 1, 3, 7, 7, 12, 7, 10, 7, 4, 12, 4, 5, 9, 7, 9, 0, 12, 9, 2, 9, 7, 4, 11, 0, 1, 4, 5, 12, 9, 11, 8, 3, 3, 3, 11, 2, 6, 0, 10, 5, 9, 7, 11, 6, 0, 11, 11, 0, 2, 7, 6, 1, 5, 4, 0, 2, 11, 9, 7, 7, 7, 5, 1, 11, 7
Offset: 0

Views

Author

Jianing Song, Nov 26 2018

Keywords

Comments

This square root of 3 in the 13-adic field ends with digit 9. The other, A322087, ends with digit 4.

Examples

			...10B47929C097954C47A7C773116286B233BA04649.
		

Crossrefs

Programs

  • PARI
    a(n) = truncate(-sqrt(3+O(13^(n+1))))\13^n

Formula

a(n) = (A322086(n+1) - A322086(n))/13^n.
For n > 0, a(n) = 12 - A322087(n).
This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {2*T(13^n,9/2)}, where T(n,x) denotes the n-th Chebyshev polynomial. - Peter Bala, Dec 04 2022

A322085 One of the two successive approximations up to 13^n for 13-adic integer sqrt(3). Here the 4 (mod 13) case (except for n = 0).

Original entry on oeis.org

0, 4, 108, 1122, 18698, 361430, 1104016, 5930825, 570667478, 7912243967, 113957237697, 251815729546, 11004778093768, 104197118583692, 3132948184506222, 26757206498701956, 589802029653700283, 7909384730668678534, 85763128005100719931, 648040162764887685576
Offset: 0

Views

Author

Jianing Song, Nov 26 2018

Keywords

Comments

For n > 0, a(n) is the unique solution to x^2 == 3 (mod 13^n) in the range [0, 13^n - 1] and congruent to 4 modulo 13.
A322086 is the approximation (congruent to 9 mod 13) of another square root of 3 over the 13-adic field.

Examples

			4^2 = 16 = 1*13 + 3.
108^2 = 11664 = 69*13^2 + 3.
1122^2 = 1258884 = 573*13^3 + 3.
		

Crossrefs

Programs

  • Maple
    S:= map(t -> op([1,3],t),[padic:-evalp(RootOf(x^2-3,x),13,30)]):
    S4:= op(select(t -> t[1]=4, S)):
    seq(add(S4[i]*13^(i-1),i=1..n-1),n=1..31); # Robert Israel, Jun 13 2019
  • PARI
    a(n) = truncate(sqrt(3+O(13^n)))

Formula

For n > 0, a(n) = 13^n - A322086(n).
a(n) = Sum_{i=0..n-1} A322087(i)*13^i.
a(n) = A286840(n)*A322089(n) mod 13^n = A286841(n)*A322090(n) mod 13^n.

A309989 Digits of one of the two 17-adic integers sqrt(-1).

Original entry on oeis.org

4, 2, 10, 5, 12, 16, 12, 8, 13, 3, 14, 0, 6, 1, 0, 15, 1, 8, 14, 5, 7, 16, 14, 1, 5, 13, 9, 6, 5, 12, 16, 15, 9, 16, 14, 12, 16, 1, 3, 6, 4, 10, 15, 5, 16, 12, 2, 1, 5, 4, 0, 15, 2, 11, 14, 9, 5, 1, 11, 16, 15, 7, 5, 6, 14, 3, 12, 0, 0, 11, 12, 13, 9, 5, 4, 16, 13
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

This square root of -1 in the 17-adic field ends with digit 4. The other, A309990, ends with digit 13 (D when written as a 17-adic number).

Examples

			The solution to x^2 == -1 (mod 17^4) such that x == 4 (mod 17) is x == 27493 (mod 17^4), and 27493 is written as 5A24 in heptadecimal, so the first four terms are 4, 2, 10 and 5.
		

Crossrefs

Digits of p-adic square roots:
A318962, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A051277, A290558 (7-adic, sqrt(2));
A321074, A321075 (11-adic, sqrt(3));
A321078, A321079 (11-adic, sqrt(5));
A322091, A322092 (13-adic, sqrt(-3));
A286838, A286839 (13-adic, sqrt(-1));
A322087, A322088 (13-adic, sqrt(3));
this sequence, A309990 (17-adic, sqrt(-1)).

Programs

  • PARI
    a(n) = truncate(sqrt(-1+O(17^(n+1))))\17^n

Formula

a(n) = (A286877(n+1) - A286877(n))/17^n.
For n > 0, a(n) = 16 - A309990(n).

A309990 Digits of one of the two 17-adic integers sqrt(-1).

Original entry on oeis.org

13, 14, 6, 11, 4, 0, 4, 8, 3, 13, 2, 16, 10, 15, 16, 1, 15, 8, 2, 11, 9, 0, 2, 15, 11, 3, 7, 10, 11, 4, 0, 1, 7, 0, 2, 4, 0, 15, 13, 10, 12, 6, 1, 11, 0, 4, 14, 15, 11, 12, 16, 1, 14, 5, 2, 7, 11, 15, 5, 0, 1, 9, 11, 10, 2, 13, 4, 16, 16, 5, 4, 3, 7, 11, 12, 0
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

This square root of -1 in the 17-adic field ends with digit 13 (D when written as a 17-adic number). The other, A309989, ends with digit 4.

Examples

			The solution to x^2 == -1 (mod 17^4) such that x == 13 (mod 17) is x == 56028 (mod 17^4), and 56028 is written as B6ED in heptadecimal, so the first four terms are 13, 14, 6 and 11.
		

Crossrefs

Digits of p-adic square roots:
A318962, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A051277, A290558 (7-adic, sqrt(2));
A321074, A321075 (11-adic, sqrt(3));
A321078, A321079 (11-adic, sqrt(5));
A322091, A322092 (13-adic, sqrt(-3));
A286838, A286839 (13-adic, sqrt(-1));
A322087, A322088 (13-adic, sqrt(3));
A309989, this sequence (17-adic, sqrt(-1)).

Programs

  • PARI
    a(n) = truncate(-sqrt(-1+O(17^(n+1))))\17^n

Formula

a(n) = (A286878(n+1) - A286878(n))/17^n.
For n > 0, a(n) = 16 - A309989(n).

A322091 Digits of one of the two 13-adic integers sqrt(-3).

Original entry on oeis.org

6, 3, 12, 6, 10, 7, 4, 4, 9, 8, 9, 2, 8, 5, 12, 3, 5, 4, 0, 6, 5, 1, 2, 6, 5, 9, 4, 9, 1, 1, 4, 6, 11, 3, 1, 12, 5, 2, 2, 6, 3, 11, 11, 8, 4, 5, 10, 10, 7, 9, 5, 7, 7, 7, 8, 0, 1, 0, 7, 7, 0, 9, 12, 10, 8, 1, 6, 1, 2, 10, 2, 9, 7, 2, 1, 10, 11, 4, 3, 5, 6
Offset: 0

Views

Author

Jianing Song, Nov 26 2018

Keywords

Comments

This square root of -3 in the 13-adic field ends with digit 6. The other, A322092, ends with digit 7.

Examples

			...36225C13B64119495621560453C582989447A6C36.
		

Crossrefs

Programs

  • PARI
    a(n) = truncate(sqrt(-3+O(13^(n+1))))\13^n

Formula

a(n) = (A322089(n+1) - A322089(n))/13^n.
For n > 0, a(n) = 12 - A322092(n).
This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {L(13^n,6)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 05 2022

A322092 Digits of one of the two 13-adic integers sqrt(-3).

Original entry on oeis.org

7, 9, 0, 6, 2, 5, 8, 8, 3, 4, 3, 10, 4, 7, 0, 9, 7, 8, 12, 6, 7, 11, 10, 6, 7, 3, 8, 3, 11, 11, 8, 6, 1, 9, 11, 0, 7, 10, 10, 6, 9, 1, 1, 4, 8, 7, 2, 2, 5, 3, 7, 5, 5, 5, 4, 12, 11, 12, 5, 5, 12, 3, 0, 2, 4, 11, 6, 11, 10, 2, 10, 3, 5, 10, 11, 2, 1, 8, 9, 7, 6
Offset: 0

Views

Author

Jianing Song, Nov 26 2018

Keywords

Comments

This square root of -3 in the 13-adic field ends with digit 7. The other, A322091, ends with digit 6.

Examples

			...96AA70B9168BB38376AB76C879074A34388526097.
		

Crossrefs

Programs

  • PARI
    a(n) = truncate(-sqrt(-3+O(13^(n+1))))\13^n

Formula

a(n) = (A322090(n+1) - A322090(n))/13^n.
For n > 0, a(n) = 12 - A322091(n).
This 13-adic integer is the 13-adic limit as n -> oo of the integer sequence {L(13^n,7)}, where L(n,x) denotes the n-th Lucas polynomial, the n-th row polynomial of A114525. - Peter Bala, Dec 05 2022
Showing 1-10 of 11 results. Next