A322269 a(n) is the largest minimal prime P such that, for any odd number b, the product P*b is a nonzero square modulo 8 and modulo each of the first n primes.
7, 23, 83, 311, 1873, 3583, 12289, 33049, 67369, 174241, 552841, 1010881, 3267289, 7921489, 12537719, 30706079, 56988649, 108345169, 328583161, 880051561, 1644946249
Offset: 1
Examples
For n=3, we want the product to be a square mod 8, mod 2, mod 3 and mod 5. The corresponding products b*f are, for all b < 120 and coprime to 120: 1*1, 7*7, 11*11, 13*13, 17*17, 19*19, 23*23, 29*29, 31*31, 37*13, 41*41, 43*43, 47*23, 49*1, 53*53, 59*11, 61*61, 67*43, 71*71, 73*73, 77*53, 79*31, 83*83, 89*41, 91*19, 97*73, 101*29, 103*7, 107*83, 109*61, 113*17, 119*71. (See A322272.) The largest f in this set is 83 (associated with b=83 and b=107). Therefore a(3) = 83.
Crossrefs
Programs
-
PARI
QresCode(n, nPrimes) = { code = bitand(n,7)>>1; for (j=2, nPrimes, x = Mod(n,prime(j)); if (issquare(x), code += (1<
Comments