cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322291 Triangle T read by rows: T(n, k) = Sum_{i=1..k} binomial(n, floor((n-k)/2)+i).

Original entry on oeis.org

1, 2, 3, 3, 6, 7, 6, 10, 14, 15, 10, 20, 25, 30, 31, 20, 35, 50, 56, 62, 63, 35, 70, 91, 112, 119, 126, 127, 70, 126, 182, 210, 238, 246, 254, 255, 126, 252, 336, 420, 456, 492, 501, 510, 511, 252, 462, 672, 792, 912, 957, 1002, 1012, 1022, 1023, 462, 924, 1254, 1584, 1749, 1914, 1969, 2024, 2035, 2046, 2047
Offset: 1

Views

Author

Stefano Spezia, Aug 28 2019

Keywords

Comments

T(n, k) is a sharp upper bound on the cardinality of a k-antichain in {0, 1}^n due to P. Erdős.
T(n, k) is also the total number of compositions with first part k, n+1 parts, and all differences between adjacent parts in {-1,1}. - John Tyler Rascoe, May 07 2023

Examples

			n\k|   1    2    3    4    5    6
---+-----------------------------
1  |   1
2  |   2    3
3  |   3    6    7
4  |   6   10   14   15
5  |  10   20   25   30   31
6  |  20   35   50   56   62   63
...
		

Crossrefs

Programs

  • GAP
    Flat(List([1..11], n->List([1..n], k->Sum([1..k], i->Binomial(n, Int((n-k)/2)+i)))));
    
  • Maple
    a:=(n, k)->sum(binomial(n, floor((1/2)*n-(1/2)*k)+i), i = 1..k): seq(seq(a(n, k), k = 1..n), n = 1..11);
  • Mathematica
    T[n_,k_]:=Sum[Binomial[n,Floor[(n-k)/2]+i],{i,1,k}]; Table[T[n,k],{n,1,11},{k,1,n}]
  • PARI
    T(n, k) = sum(i=1, k, binomial(n, floor((n-k)/2)+i));

Formula

T(n, n) = A000225(n).
T(n, n-1) = A000918(n).
T(n, n-2) = A000247(n).
T(n, n-3) = A052515(n).
T(n, n-4) = A272352(n+1).
T(n, n-5) = A052516(n).