A322364 Numerator of the sum of inverse products of parts in all partitions of n.
1, 1, 3, 11, 7, 27, 581, 4583, 2327, 69761, 775643, 147941, 30601201, 30679433, 10928023, 6516099439, 445868889691, 298288331489, 7327135996801, 1029216937671847, 14361631943741, 837902013393451, 2766939485246012129, 274082602410356881, 835547516381094139939
Offset: 0
Examples
1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..505
- A. Knopfmacher, J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
- D. Zeilberger, N. Zeilberger, Fractional Counting of Integer Partitions, 2018.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1) +b(n-i, min(i, n-i))/i) end: a:= n-> numer(b(n$2)): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i]; a[n_] := Numerator[b[n, n]]; a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
-
PARI
a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ Michel Marcus, Apr 29 2020