A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.
1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0
Examples
1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1268
- Andreas B. G. Blobel, An Asymptotic Form of the Generating Function Prod_{k=1,oo} (1+x^k/k), arXiv:1904.07808 [math.CO], 2019.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 137.
- A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388.
- D. Zeilberger, N. Zeilberger, Fractional Counting of Integer Partitions, 2018.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +b(n-i, min(i-1, n-i))/i)) end: a:= n-> numer(b(n$2)): seq(a(n), n=0..30);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]]; a[n_] := Numerator[b[n, n]]; a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)
Formula
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022
Comments