cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322577 a(n) = Sum_{d|n} psi(n/d) * phi(d).

Original entry on oeis.org

1, 4, 6, 11, 10, 24, 14, 28, 26, 40, 22, 66, 26, 56, 60, 68, 34, 104, 38, 110, 84, 88, 46, 168, 74, 104, 102, 154, 58, 240, 62, 160, 132, 136, 140, 286, 74, 152, 156, 280, 82, 336, 86, 242, 260, 184, 94, 408, 146, 296, 204, 286, 106, 408, 220, 392, 228, 232, 118, 660
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 29 2019

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with Euler totient function (A000010).
Dirichlet convolution of A008966 with A018804.
Dirichlet convolution of A038040 with A271102.

Crossrefs

Cf. A327251 (inverse Möbius transform), A347092 (Dirichlet inverse), A347093 (sum with it), A347135.

Programs

  • Maple
    f:= proc(n) local t;
      mul((t[2]+1)*t[1]^t[2] - (t[2]-1)*t[1]^(t[2]-2), t = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2019
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e + 1)*p^e - (e - 1)*p^(e - 2); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    seq(n) = {dirmul(vector(n, n, eulerphi(n)), vector(n, n, n * sumdivmult(n, d, issquarefree(d)/d)))} \\ Andrew Howroyd, Aug 29 2019
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d)); \\ Antti Karttunen, Apr 03 2022

Formula

Dirichlet g.f.: zeta(s-1)^2 / zeta(2*s).
a(p) = 2*p, where p is prime.
Sum_{k=1..n} a(k) ~ 45*n^2*(2*Pi^4*log(n) - Pi^4 + 4*gamma*Pi^4 - 360*zeta'(4)) / (2*Pi^8), where gamma is the Euler-Mascheroni constant A001620 and for zeta'(4) see A261506. - Vaclav Kotesovec, Aug 31 2019
a(p^k) = (k+1)*p^k - (k-1)*p^(k-2) where p is prime. - Robert Israel, Sep 01 2019
a(n) = Sum_{k=1..n} psi(gcd(n,k)). - Ridouane Oudra, Nov 29 2019
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021