cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322657 Integers whose set of divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.

Original entry on oeis.org

36, 72, 144, 200, 288, 324, 392, 400, 450, 576, 648, 784, 800, 882, 900, 1152, 1296, 1568, 1600, 1764, 1800, 1936, 2178, 2304, 2450, 2592, 2704, 2916, 3042, 3136, 3200, 3528, 3600, 3872, 4050, 4356, 4608, 4900, 5000, 5184, 5202, 5408, 5832, 6050, 6084, 6272, 6400, 6498
Offset: 1

Views

Author

Michel Marcus, Dec 22 2018

Keywords

Comments

Called two-layered numbers in Behzadipour link.

Examples

			36 is a term with {2, 3, 4, 36} and {6, 9, 12, 18} having equal sums 45.
		

Crossrefs

Subsequence of A028982.

Programs

  • Maple
    a:= proc(n) option remember; local k, l, t, b; b:=
          proc(m, i) option remember; m=0 or i>0 and
            (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;
          for k from 1+`if`(n=1, 1, a(n-1)) do
            l:= sort([(numtheory[divisors](k) minus {1})[]]);
            t:= add(i, i=l);
            if t::even then forget(b);
              if b(t/2, nops(l)) then return k fi
            fi
          od
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Dec 22 2018
  • Mathematica
    aQ[n_] := Module[{d = Rest[Divisors[n]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 6500], aQ] (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *)
  • PARI
    part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1];
    is(n)=my(d=divisors(n), dd = select(x->(x>1), d), s=sum(i=1, #dd, dd[i])); s%2==0 && part(s/2-n, dd[1..#dd-1]); \\ both after pari in A083207