A322657 Integers whose set of divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.
36, 72, 144, 200, 288, 324, 392, 400, 450, 576, 648, 784, 800, 882, 900, 1152, 1296, 1568, 1600, 1764, 1800, 1936, 2178, 2304, 2450, 2592, 2704, 2916, 3042, 3136, 3200, 3528, 3600, 3872, 4050, 4356, 4608, 4900, 5000, 5184, 5202, 5408, 5832, 6050, 6084, 6272, 6400, 6498
Offset: 1
Keywords
Examples
36 is a term with {2, 3, 4, 36} and {6, 9, 12, 18} having equal sums 45.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3000
- Hussein Behzadipour, Two-layered numbers, arXiv:1812.07233 [math.NT], 2018.
Programs
-
Maple
a:= proc(n) option remember; local k, l, t, b; b:= proc(m, i) option remember; m=0 or i>0 and (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end; for k from 1+`if`(n=1, 1, a(n-1)) do l:= sort([(numtheory[divisors](k) minus {1})[]]); t:= add(i, i=l); if t::even then forget(b); if b(t/2, nops(l)) then return k fi fi od end: seq(a(n), n=1..50); # Alois P. Heinz, Dec 22 2018
-
Mathematica
aQ[n_] := Module[{d = Rest[Divisors[n]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 6500], aQ] (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *)
-
PARI
part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1]; is(n)=my(d=divisors(n), dd = select(x->(x>1), d), s=sum(i=1, #dd, dd[i])); s%2==0 && part(s/2-n, dd[1..#dd-1]); \\ both after pari in A083207
Comments