A322658 Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.
36, 72, 105, 144, 195, 200, 255, 288, 315, 324, 345, 385, 392, 400, 450, 495, 525, 576, 585, 648, 675, 735, 784, 800, 805, 825, 855, 882, 900, 945, 975, 1035, 1152, 1155, 1295, 1296, 1305, 1323, 1365, 1395, 1425, 1449, 1463, 1485, 1547, 1568, 1575, 1600, 1645, 1665, 1755, 1764, 1785
Offset: 1
Keywords
Examples
36 is a term with {2, 3, 4, 18} and B = {6, 9, 12} having equal sums 27.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- Hussein Behzadipour, Two-layered numbers, arXiv:1812.07233 [math.NT], 2018.
Programs
-
Maple
a:= proc(n) option remember; local k, l, t, b; b:= proc(m, i) option remember; m=0 or i>0 and (b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end; for k from 1+`if`(n=1, 1, a(n-1)) do if isprime(k) then next fi; l:= sort([(numtheory[divisors](k) minus {1, k})[]]); t:= add(i, i=l); if t::even then forget(b); if b(t/2, nops(l)) then return k fi fi od end: seq(a(n), n=1..60); # Alois P. Heinz, Dec 22 2018
-
Mathematica
aQ[n_] := CompositeQ[n] && Module[{d = Rest[Most[Divisors[n]]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 1785], aQ] (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *)
-
PARI
part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1]; is(n)=my(d=divisors(n), dd = select(x->((x>1) && (x
A083207
Comments