cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322765 Array read by upwards antidiagonals: T(m,n) = number of set partitions of the multiset consisting of one copy each of x_1, x_2, ..., x_m, and two copies each of y_1, y_2, ..., y_n, for m >= 0, n >= 0.

Original entry on oeis.org

1, 1, 2, 2, 4, 9, 5, 11, 26, 66, 15, 36, 92, 249, 712, 52, 135, 371, 1075, 3274, 10457, 203, 566, 1663, 5133, 16601, 56135, 198091, 877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, 4140, 13082, 43263, 149410, 537813, 2014321, 7837862, 31638625, 132315780
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Examples

			The array begins:
    1,    2,     9,     66,      712,     10457,      198091, ...
    1,    4,    26,    249,     3274,     56135,     1207433, ...
    2,   11,    92,   1075,    16601,    325269,     7837862, ...
    5,   36,   371,   5133,    91226,   2014321,    53840640, ...
   15,  135,  1663,  26683,   537813,  13241402,   389498179, ...
   52,  566,  8155, 149410,  3376696,  91914202,  2955909119, ...
  203, 2610, 43263, 894124, 22451030, 670867539, 23456071495, ...
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778.

Crossrefs

Rows include A020555, A322766, A322767.
Columns include A000110, A035098, A322764, A322768.
Main diagonal is A322769.
See A322770 for partitions into distinct parts.

Programs

  • Maple
    B := n -> combinat[bell](n):
    P := proc(m,n) local k; global B; option remember;
    if n = 0 then B(m)  else
    (1/2)*( P(m+2,n-1) + P(m+1,n-1) + add( binomial(n-1,k)*P(m,k), k=0..n-1) ); fi; end; # P(m,n) (which is Knuth's notation) is T(m,n)
  • Mathematica
    P[m_, n_] := P[m, n] = If[n == 0, BellB[m], (1/2)(P[m+2, n-1] + P[m+1, n-1] + Sum[Binomial[n-1, k] P[m, k], {k, 0, n-1}])];
    Table[P[m-n, n], {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 02 2019, from Maple *)
  • PARI
    {T(n, k) = if(k==0, sum(j=0, n, stirling(n, j, 2)), (T(n+2, k-1)+T(n+1, k-1)+sum(j=0, k-1, binomial(k-1, j)*T(n, j)))/2)} \\ Seiichi Manyama, Nov 21 2020

Formula

Knuth p. 779 gives a recurrence using the Bell numbers A000110 (see Maple program).
From Alois P. Heinz, Jul 21 2021: (Start)
A(n,k) = A001055(A002110(n+k)*A002110(k)).
A(n,k) = A346500(n+k,k). (End)