A322785 Number of uniform multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.
1, 1, 4, 4, 12, 4, 48, 4, 183, 297, 1186, 4, 33950, 4, 139527, 1529608, 4726356, 4, 229255536, 4, 3705777010, 36279746314, 13764663019, 4, 14096735197959, 5194673049514, 7907992957755, 2977586461058927, 13426396910491001, 4, 1350012288268171854, 4, 59487352224070807287
Offset: 0
Keywords
Examples
The a(1) = 1 though a(6) = 48 multiset partitions: {1} {11} {111} {1111} {11111} {111111} {12} {123} {1122} {12345} {111222} {1}{1} {1}{1}{1} {1234} {1}{1}{1}{1}{1} {112233} {1}{2} {1}{2}{3} {11}{11} {1}{2}{3}{4}{5} {123456} {11}{22} {111}{111} {12}{12} {111}{222} {12}{34} {112}{122} {13}{24} {112}{233} {14}{23} {113}{223} {1}{1}{1}{1} {122}{133} {1}{1}{2}{2} {123}{123} {1}{2}{3}{4} {123}{456} {124}{356} {125}{346} {126}{345} {134}{256} {135}{246} {136}{245} {145}{236} {146}{235} {156}{234} {11}{11}{11} {11}{12}{22} {11}{22}{33} {11}{23}{23} {12}{12}{12} {12}{12}{33} {12}{13}{23} {12}{34}{56} {12}{35}{46} {12}{36}{45} {13}{13}{22} {13}{24}{56} {13}{25}{46} {13}{26}{45} {14}{23}{56} {14}{25}{36} {14}{26}{35} {15}{23}{46} {15}{24}{36} {15}{26}{34} {16}{23}{45} {16}{24}{35} {16}{25}{34} {1}{1}{1}{1}{1}{1} {1}{1}{1}{2}{2}{2} {1}{1}{2}{2}{3}{3} {1}{2}{3}{4}{5}{6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Sum[Length[Select[mps[m],SameQ@@Length/@#&]],{m,Table[Join@@Table[Range[n/d],{d}],{d,Divisors[n]}]}],{n,8}]
Formula
a(n) = 4 <=> n in { A000040 }. - Alois P. Heinz, Feb 03 2022
Extensions
More terms from Alois P. Heinz, Jan 30 2019
Terms a(14) and beyond from Andrew Howroyd, Feb 03 2022
Comments