cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322830 a(n) = 32*n^3 + 48*n^2 + 18*n + 1.

Original entry on oeis.org

1, 99, 485, 1351, 2889, 5291, 8749, 13455, 19601, 27379, 36981, 48599, 62425, 78651, 97469, 119071, 143649, 171395, 202501, 237159, 275561, 317899, 364365, 415151, 470449, 530451, 595349, 665335, 740601, 821339, 907741, 999999, 1098305, 1202851, 1313829, 1431431, 1555849
Offset: 0

Views

Author

Seiichi Manyama, Dec 27 2018

Keywords

Examples

			(sqrt(2) + sqrt(1))^6 = 99 + 70*sqrt(2) = 99 + sqrt(99^2 - 1). So a(1) = 99.
		

Crossrefs

Column 3 of A322790.
Cf. A144129.

Programs

  • GAP
    a:=List([0..40],n->32*n^3+48*n^2+18*n+1);; Print(a); # Muniru A Asiru, Jan 02 2019
  • Maple
    [32*n^3+48*n^2+18*n+1$n=0..40]; # Muniru A Asiru, Jan 02 2019
  • Mathematica
    CoefficientList[Series[(1 + x) (1 + 94 x + x^2)/(1 - x)^4, {x, 0, 36}], x] (* or *)
    Array[ChebyshevT[3, 2 # + 1] &, 37, 0] (* Michael De Vlieger, Jan 01 2019 *)
    Table[32n^3+48n^2+18n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,99,485,1351},40] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    {a(n) = 32*n^3+48*n^2+18*n+1}
    
  • PARI
    {a(n) = polchebyshev(3, 1, 2*n+1)}
    
  • PARI
    Vec((1 + x)*(1 + 94*x + x^2) / (1 - x)^4 + O(x^40)) \\ Colin Barker, Dec 27 2018
    

Formula

a(n) + sqrt(a(n)^2 - 1) = (sqrt(n+1) + sqrt(n))^6.
a(n) - sqrt(a(n)^2 - 1) = (sqrt(n+1) - sqrt(n))^6.
a(n) = A144129(2*n+1) = T_3(2*n+1) where T_{n}(x) is a Chebyshev polynomial of the first kind.
From Colin Barker, Dec 27 2018: (Start)
G.f.: (1 + x)*(1 + 94*x + x^2) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
a(n) = (2*n + 1)*(16*n^2 + 16*n + 1). - Bruno Berselli, Jan 02 2019