cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322925 Expansion of x*(1 + 2*x + 10*x^2)/((1 - x^2)*(1 - 10*x^2)).

Original entry on oeis.org

0, 1, 2, 21, 22, 221, 222, 2221, 2222, 22221, 22222, 222221, 222222, 2222221, 2222222, 22222221, 22222222, 222222221, 222222222, 2222222221, 2222222222, 22222222221, 22222222222, 222222222221, 222222222222, 2222222222221, 2222222222222, 22222222222221
Offset: 0

Views

Author

Vincenzo Librandi, Mar 16 2019

Keywords

Crossrefs

Bisections give: A002276 (even part), A165402 (odd part).

Programs

  • GAP
    a:=[0,1,2,21];; for n in [5..30] do a[n]:=11*a[n-2]-10*a[n-4]; od; Print(a); # Muniru A Asiru, Apr 10 2019
  • Magma
    I:=[0,1,2,21]; [n le 4 select I[n] else 11*Self(n-2)-10*Self(n-4): n in [1..30]];
    
  • Maple
    seq(coeff(series(x*(1+2*x+10*x^2)/((1-x^2)*(1-10*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Apr 10 2019
  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 10 x^2)/((1 - x^2) (1 - 10 x^2)), {x, 0, 33}], x]
    LinearRecurrence[{0,11,0,-10},{0,1,2,21},30] (* Harvey P. Dale, Mar 02 2021 *)

Formula

G.f.: x*(1 + 2*x + 10*x^2)/((1 - x^2)*(1 - 10*x^2)).
a(n) = 11*a(n-2) - 10* a(n-4).
a(n) = 2*(10^n - 1)/9 for n even; a(n) = (2*10^n - 11)/9 otherwise.
a(n) = (2/9)*10^floor((n + 1)/2) + (-1)^n/2 - 13/18. - Bruno Berselli, Mar 16 2019