A323065
Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^d for n >= 2 starting with c(1) = C. C and d are the real constants given below.
Original entry on oeis.org
3, 5, 7, 11, 19, 41, 103, 331, 1423, 8819, 86477, 1504949, 53691233, 4703173021, 1267699542037, 1394588856899951, 8916055416478425247
Offset: 1
c(1) = 3.3468, a(1) = 3; c(2) = 4.53390554, a(2) = 5; c(3) = 6.6288905, a(3) = 7; ...; c(n) = c(n-1)^d and a(n) = {c(n)} is the value rounded to the nearest integer.
-
# Computes the values according to the formula, s = 3.34683553..., d = 1.2512951, m the number of terms. Returns the real and the rounded values (primes).
val := proc(s, d, m)
local ll, v, n;
v := s;
ll := [v];
for n to m-1 do
v := v^d; ll := [op(ll), v]
end do;
return [ll, map(round, ll)]
end:
A306317
Prime numbers generated by the formula a(n) = round(2^(d^n)), where d is the real constant 1.30076870414817691055252567828266106688423996320151467218595488...
Original entry on oeis.org
2, 3, 5, 7, 13, 29, 79, 293, 1619, 14947, 269237, 11570443, 1540936027, 893681319109, 3513374197622981, 166491395148719076277, 201072926144898161374940903, 16390008340104365722976984827792343, 320076519482444467256811692239892862140322229, 7781106039755041703318535124896118983796534882794414187099
Offset: 1
-
# Computes the values according to the formula, v = 2..., e = 1.30076870414817691055252567828266106688423996320151467218595488..., m the # number of terms. Returns the real and the rounded values (primes). In this case 23 terms will be generated
val := proc(s, e, m)
local ll, v, n, kk;
v := s;
ll := [];
for n to m do
v := v^e; ll := [op(ll), v]
end do;
return [ll, map(round, ll)]
end;
A323611
Prime numbers generated by the formula a(n) = round(c(n)), where c(n) = c(n-1)^(3/2) for n >= 2 starting with c(1) = C and C the real constant given below.
Original entry on oeis.org
2, 3, 5, 11, 37, 223, 3331, 192271, 84308429, 774116799347, 681098209317971743, 562101323304225290104514179, 13326678220145859782825116625722145759009, 1538448162271607869601834587431948506238982765193425993274489
Offset: 1
c(1) = 2.038239154782068, c(2) = 2.9099311279, c(3) = 4.96391190457, c(4) = 11.05951540, ... so a(1) = {c(1)} = 2, a(2) = {c(2)} = 3, a(3) = {c(3)} = 5, ...
c(n) = c(n-1)^(3/2) and a(n) = {c(n)} is the value rounded to the nearest integer.
-
# Computes the values according to the formula, c = 2.03823915478..., e = 3/2, m the number of terms. Returns the real and the rounded values (primes).
val := proc(c, e, m)
local ll, v, n;
v := c;
ll := [v];
for n to m-1 do
v := v^e; ll := [op(ll), v]
end do;
return [ll, map(round, ll)]
end:
Showing 1-3 of 3 results.
Comments