A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).
1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eckford Cohen, A property of Dedekind's psi-function, Proceedings of the American Mathematical Society, Vol. 12, No. 6 (1961), p. 996.
Crossrefs
Programs
-
Mathematica
psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
-
Python
from math import isqrt, prod from sympy import mobius, integer_nthroot, primefactors def A323332(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) return c+l a = primefactors(m:=bisection(f,n,n)) return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024
Comments