cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003293 Number of planar partitions of n decreasing across rows.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
Offset: 0

Views

Author

Keywords

Comments

Also number of planar partitions monotonically decreasing down antidiagonals (i.e., with b(n,k) <= b(n-1,k+1)). Transpose (to get planar partitions decreasing down columns), then take the conjugate of each row. - Franklin T. Adams-Watters, May 15 2006
Also number of partitions into one kind of 1's and 2's, two kinds of 3's and 4's, three kinds of 5's and 6's, etc. - Joerg Arndt, May 01 2013
Also count of semistandard Young tableaux with sum of entries equal to n (row sums of A228125). - Wouter Meeussen, Aug 11 2013

Examples

			From _Gus Wiseman_, Jan 17 2019: (Start)
The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows):
  6   51   42   411   33   321   3111   222   2211   21111   111111
.
  5   4   41   31   32   311   22   221   2111
  1   2   1    2    1    1     11   1     1
.
  3
  2
  1
(End)
		

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n,2)=0,n,n+1)/2): seq(a(n), n=0..45);  # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]] (* Jean-François Alcover, Apr 18 2011, after Michael Somos *)
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */

Formula

G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015

Extensions

More terms from James Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000

A323429 Number of rectangular plane partitions of n.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 26, 35, 58, 81, 124, 169, 257, 345, 501, 684, 968, 1304, 1830, 2452, 3387, 4541, 6188, 8257, 11193, 14865, 19968, 26481, 35341, 46674, 62007, 81611, 107860, 141602, 186292, 243800, 319610, 416984, 544601, 708690, 922472, 1197018, 1553442
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of an integer partition of n so that the rows and columns are weakly decreasing.

Examples

			The a(5) = 14 matrices:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]

A323430 Number of rectangular plane partitions of n with strictly decreasing rows and columns.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 9, 12, 16, 22, 27, 36, 44, 57, 72, 89, 110, 139, 170, 210, 261, 318, 390, 478, 581, 705, 860, 1036, 1252, 1511, 1816, 2178, 2618, 3127, 3743, 4471, 5330, 6347, 7564, 8984, 10674, 12669, 15016, 17780, 21050, 24868, 29371, 34655, 40836, 48080
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of an integer partition of n so that the rows and columns are strictly decreasing.

Examples

			The a(8) = 12 matrices:
  [8] [7 1] [6 2] [5 3] [5 2 1] [4 3 1]
.
  [7] [6] [5] [3 2]
  [1] [2] [3] [2 1]
.
  [5] [4]
  [2] [3]
  [1] [1]
The a(10) = 22 matrices:
  [10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1]
.
  [9] [8] [7] [6] [5 2] [4 2] [4 3]
  [1] [2] [3] [4] [2 1] [3 1] [2 1]
.
  [7] [6] [5] [5]
  [2] [3] [4] [3]
  [1] [1] [1] [2]
.
  [4]
  [3]
  [2]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Tuples[Select[IntegerPartitions[#,{k}],UnsameQ@@#&]&/@ptn]],And@@(OrderedQ[#,Greater]&/@Transpose[#])&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]

A323437 Number of semistandard Young tableaux whose entries are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 5, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 1, 5, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a Young diagram with the prime indices of n such that all rows are weakly increasing and all columns are strictly increasing.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Is this a duplicate of A339887? - R. J. Mathar, Feb 03 2021

Examples

			The a(60) = 5 tableaux:
  1123
.
  11   112   113
  23   3     2
.
  11
  2
  3
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]];
    Table[Length[Select[ptnplane[y],And[And@@Less@@@#,And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])]&]],{y,100}]

Formula

Sum_{A056239(n) = k} a(k) = A003293(n).

A323431 Number of strict rectangular plane partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 21, 25, 33, 41, 53, 65, 81, 97, 121, 143, 173, 215, 255, 305, 367, 441, 527, 637, 751, 899, 1067, 1269, 1491, 1775, 2071, 2439, 2875, 3357, 3911, 4577, 5309, 6177, 7171, 8305, 9609, 11151
Offset: 0

Views

Author

Gus Wiseman, Jan 16 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of a strict integer partition of n so that the rows and columns are strictly decreasing.

Examples

			The a(10) = 21 matrices:
  [10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1]
.
  [9] [8] [7] [6] [4 2] [4 3]
  [1] [2] [3] [4] [3 1] [2 1]
.
  [7] [6] [5] [5]
  [2] [3] [4] [3]
  [1] [1] [1] [2]
.
  [4]
  [3]
  [2]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{k}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,30}]

A323582 Number of generalized Young tableaux with constant rows, weakly increasing columns, and entries summing to n.

Original entry on oeis.org

1, 1, 3, 5, 11, 16, 33, 47, 85, 126, 208, 299, 486, 685, 1050, 1496, 2221, 3097, 4523, 6239, 8901, 12219, 17093, 23202, 32120, 43200, 58899, 78761, 106210, 140786, 188192, 247689, 327965, 429183, 563592, 732730, 955851, 1235370, 1600205, 2057743, 2649254
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2019

Keywords

Comments

For strictly increasing columns, see A100883.

Examples

			The a(5) = 16 tableaux:
  5   1 1 1 1 1
.
  1   2    1 1   1 1 1   1 1 1   1 1 1 1
  4   3    3     2       1 1     1
.
  1   1    1 1   1 1     1 1 1
  1   2    1     1 1     1
  3   2    2     1       1
.
  1   1 1
  1   1
  1   1
  2   1
.
  1
  1
  1
  1
  1
		

Crossrefs

Programs

  • Mathematica
    comps[q_]:=Table[Table[Take[q,{Total[Take[c,i-1]]+1,Total[Take[c,i]]}],{i,Length[c]}],{c,Join@@Permutations/@IntegerPartitions[Length[q]]}];
    Table[Sum[Length[Select[comps[ptn],And@@SameQ@@@#&&GreaterEqual@@Length/@#&]],{ptn,Sort/@IntegerPartitions[n]}],{n,10}]

Extensions

a(21)-a(40) from Seiichi Manyama, Aug 20 2020

A323435 Number of rectangular plane partitions of n with no repeated rows or columns.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 8, 13, 15, 28, 33, 52, 69, 101, 133, 202, 256, 369, 506, 688, 935, 1295, 1736, 2355, 3184, 4284, 5745, 7722, 10281, 13691, 18316, 24168, 32058, 42389, 55915, 73542, 96753, 126709, 166079, 217017, 283258
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Comments

Number of ways to fill a (not necessarily square) matrix with the parts of an integer partition of n so that the rows and columns are weakly decreasing and with no repeated rows or columns.

Examples

			The a(7) = 13 plane partitions:
  [7] [4 3] [5 2] [6 1] [4 2 1]
.
  [6] [5] [3 2] [4 1] [4] [2 2] [3 1]
  [1] [2] [1 1] [1 1] [3] [2 1] [2 1]
.
  [4]
  [2]
  [1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Tuples[IntegerPartitions[#,{k}]&/@ptn]],And[UnsameQ@@#,UnsameQ@@Transpose[#],And@@(OrderedQ[#,GreaterEqual]&/@Transpose[#])]&]],{ptn,IntegerPartitions[n]},{k,Min[ptn]}],{n,20}]
Showing 1-7 of 7 results.