A323544
a(n) = Product_{k=0..n} (k^6 + (n-k)^6).
Original entry on oeis.org
0, 1, 8192, 2245338225, 1144394036019200, 2577023355527587890625, 13410804447068120796679372800, 172661401915668867785003701060950625, 4548909593429214367033270472265433088000000, 234845240509381890690238640158397433600579682850625
Offset: 0
-
[(&*[(k^6 + (n-k)^6): k in [0..n]]): n in [0..10]]; // Vincenzo Librandi, Jan 18 2019
-
Table[Product[k^6+(n-k)^6, {k, 0, n}], {n, 0, 10}]
-
m=6; vector(10, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=6; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..10)] # G. C. Greubel, Jan 18 2019
A323496
a(n) = Product_{k=1..n} (binomial(k-1,3) + binomial(n-k,3)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1600, 1280000, 1225000000, 1487467520000, 2342962705305600, 4757234928058368000, 12302981968140864000000, 39976163552160000000000000, 161025498138224463853824000000, 794000312545927932130993635328000, 4737527580526919896601692054005760000
Offset: 0
-
Table[Product[Binomial[k-1,3] + Binomial[n-k,3], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1,3) + binomial(n-k,3)); \\ Michel Marcus, Jan 17 2019
A323497
a(n) = Product_{k=1..n} (binomial(k-1,4) + binomial(n-k,4)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 6890625, 67528125000, 771895089000000, 10758502218240000000, 193672800442598400000000, 4520389860871215408000000000, 136445409183108034775390625000000, 5281556250358583667176941845984375000, 259600586924352252185403119405592275390625
Offset: 0
-
Table[Product[Binomial[k-1,4] + Binomial[n-k,4], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1,4) + binomial(n-k,4)); \\ Michel Marcus, Jan 17 2019
A323533
a(n) = Product_{k=1..n} (binomial(k-1,5) + binomial(n-k,5)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 790420571136, 100389735898841088, 14582663231533605863424, 2458550581659926554038239232, 529554691027323329170207744475136, 146980847512952623091566575072055001088, 53003014923687519392206631372837133989462016
Offset: 0
-
Table[Product[Binomial[k-1,5] + Binomial[n-k,5], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1,5) + binomial(n-k,5)); \\ Michel Marcus, Jan 17 2019
A323535
a(n) = Product_{k=1..n} (binomial(k-1,7) + binomial(n-k,7)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 240248274716697412239360000, 5659588189073370681080838881280000, 148305406398618918682372310424354816000000, 4049882681498254991937037064898924144230400000000, 137651993399006086593846978063252515678682995490816000000
Offset: 0
-
Table[Product[Binomial[k-1,7] + Binomial[n-k,7], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1, 7) + binomial(n-k, 7)); \\ Daniel Suteu, Jan 17 2019
A323538
a(n) = Product_{k=1..n} (binomial(k-1,8) + binomial(n-k,8)).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 676788847291127500630565286687890625, 224202413239751513418389758669186941328125000, 81789054189516490351294844356948943677175390625000000, 29455964980491136378751203264203423123185624125549245000000000
Offset: 0
-
Table[Product[Binomial[k-1,8] + Binomial[n-k,8], {k, 1, n}], {n, 0, 20}]
-
a(n) = prod(k=1, n, binomial(k-1, 8)+binomial(n-k, 8)) \\ Felix Fröhlich, Jan 17 2019
Showing 1-6 of 6 results.