cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323735 a(n) is the largest minimal distance of a binary LCD [n,2] code.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 14, 14, 15, 16, 17, 18, 18, 18, 19, 20, 21, 22, 22, 22, 23, 24, 25, 26, 26, 26, 27, 28, 29, 30, 30, 30, 31, 32, 33, 34, 34, 34, 35, 36, 37, 38, 38, 38, 39, 40, 41, 42, 42, 42, 43, 44, 45, 46, 46, 46
Offset: 2

Views

Author

Hamid Kulosman, Aug 31 2019

Keywords

Comments

See Dougherty link for a definition of LCD code.

Examples

			For n = 2, a(n) = 1 since the largest minimal distance of a binary LCD [2,2] code is 1.
		

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^4)/((1 - x)^2*(1 - x + x^2) (1 + x + x^2)), {x, 0, 60}], x] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    a(n)={my(r=(n-3)\6, s=3+(n-3)%6); 4*r + floor(s/6)*(1 + s%6) + 2} \\ Andrew Howroyd, Aug 31 2019
    
  • PARI
    Vec(x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^80)) \\ Colin Barker, Sep 01 2019

Formula

a(n) = 4*r + floor(s/6)*(1 + (s mod 6)) + 2, where n = 6*r + s, r is an integer and 3 <= s <= 8.
a(n) = 4 + a(n-6) for n > 7.
a(n) = (12*n - 12 - 9*cos(n*Pi/3) + 3*cos(2*n*Pi/3) + 3*sqrt(3)*sin(n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/18. - Wesley Ivan Hurt, Aug 31 2019
From Colin Barker, Sep 01 2019: (Start)
G.f.: x^2*(1 + x^4) / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>7.
(End)
E.g.f.: 1+(1/18)*exp(-x/2)*(12*exp(3*x/2)*(-1+x)+(3-9*exp(x))*cos(sqrt(3)*x/2)*sqrt(3)*(1+3*exp(x))*sin(sqrt(3)*x/2)). - Stefano Spezia, Sep 04 2019