A323833 A Seidel matrix A(n,k) read by antidiagonals upwards.
0, 1, 1, 1, 0, -1, -2, -3, -3, -2, -5, -3, 0, 3, 5, 16, 21, 24, 24, 21, 16, 61, 45, 24, 0, -24, -45, -61, -272, -333, -378, -402, -402, -378, -333, -272, -1385, -1113, -780, -402, 0, 402, 780, 1113, 1385, 7936, 9321, 10434, 11214, 11616, 11616, 11214, 10434, 9321, 7936
Offset: 0
Examples
Triangular array T(n,k) = A(n-k,k) (n >= 0, k = 0..n), read from the antidiagonals upwards of square array A: 0; 1, 1; 1, 0, -1; -2, -3, -3, -2; -5, -3, 0, 3, 5; 16, 21, 24, 24, 21, 16; 61, 45, 24, 0, -24, -45, -61; -272, -333, -378, -402, -402, -378, -333, -272; ... From _Petros Hadjicostas_, Mar 04 2021: (Start) Square array A(n,k) (n, k >= 0) begins: 0, 1, -1, -2, 5, 16, -61, -272, 1385, ... 1, 0, -3, 3, 21, -45, -333, 1113, 9321, ... 1, -3, 0, 24, -24, -378, 780, 10434, -33264, ... -2, -3, 24, 0, -402, 402, 11214, -22830, -480162, ... -5, 21, 24, -402, 0, 11616, -11616, -502992, 1017600, ... 16, 45, -378, -402, 11616, 0, -514608, 514608, 31880016, ... ... (End)
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (matrix a_{n,k} on p. 18).
Programs
-
Maple
A323833 := proc(n,k) option remember; local i ; if k =0 then -A163747(n) ; elif n =0 then (-1)^k*A163747(k) ; elif k =n then 0 ; else add(binomial(n,i)*procname(0,k+i), i=0..n) ; end if; end proc: seq(seq(A323833(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Jun 11 2025
-
PARI
{b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111. c(n) = if(n==0, 0, (-1)^floor(n/2)*b(n)) A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ Petros Hadjicostas, Mar 04 2021
Formula
From Petros Hadjicostas, Mar 04 2021: (Start)
Formulas about the square array A(n,k) (n,k > 0):
A(n,n) = 0 and A(n,k) + (-1)^(n+k)*A(k,n) = 0.
A(n, k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i).
Joint e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(-y)*(1 - exp(-x - y)) / (1 + exp(-2*(x + y))) = 2*exp(x)*(exp(x+y) - 1) / (exp(2*(x+y)) + 1).
Formulas about the triangular array T(n,k) = A(n-k,k) (0 <= k <= n):
T(n+1,k+1) = T(n+1,k) - T(n,k).
T(n,k) = -(-1)^n*T(n,n-k).
T(n,k) = Sum_{i=0..n-k} binomial(n-k,i)*T(k+i,k+i) for k=0..n with initial condition T(n,n) = (-1)^n*A163747(n). (End)
Extensions
More terms from Alois P. Heinz, Feb 09 2019
Comments