cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323854 Triangle read by rows: T(n,k) is the numerator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1).

Original entry on oeis.org

1, 3, 1, 11, 2, 1, 25, 35, 5, 1, 137, 15, 17, 3, 1, 49, 203, 49, 35, 7, 1, 363, 469, 967, 28, 23, 4, 1, 761, 29531, 801, 1069, 27, 39, 9, 1, 7129, 6515, 4523, 285, 3013, 75, 145, 5, 1, 7381, 177133, 84095, 341693, 8591, 7513, 605, 44, 11, 1, 83711, 190553, 341747, 139381, 242537, 1903, 10831, 33, 35, 6, 1
Offset: 1

Views

Author

Keywords

Comments

Santmyer (1997) defined the generalized harmonic numbers H(n,k) of rank k by H(n,k) = Sum_{n_0 + n_1 + ... + n_k <= n} 1/(n_0*n_1*...*n_k).
If n >= 0, then the triangle {A323854(n+1,k)/A323855(n+1,k)}_{n,k} is the Riordan array (-log(1 - x)/(x*(1 - x)), -log(1 - x)/x).

Examples

			The triangle H(n,k) begins:
  n\k |   0        1       2       3     4      5     6
  -----------------------------------------------------
    1 |   1
    2 |   3/2      1
    3 |  11/6      2       1
    4 |  25/12    35/12    5/2     1
    5 | 137/60    15/4    17/4     3     1
    6 |  49/20   203/45   49/8    35/6   7/2   1
    7 | 363/140  469/90  967/120  28/3  23/3   4     1
    ...
		

Crossrefs

Cf. A001008 (column 0), A323855 (denominators).

Programs

  • Mathematica
    H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1)
    Table[Numerator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten
  • Maxima
    H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$
    create_list(num(H(n, k)), n, 1, 20, k, 0, n - 1);
    
  • PARI
    T(n, k) = -(-1)^(n+k)*numerator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ Jinyuan Wang, Mar 13 2025

Formula

T(n,k) = numerator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}).