A323854 Triangle read by rows: T(n,k) is the numerator of the generalized harmonic number H(n,k) of rank k (n >= 1, 0 <= k <= n - 1).
1, 3, 1, 11, 2, 1, 25, 35, 5, 1, 137, 15, 17, 3, 1, 49, 203, 49, 35, 7, 1, 363, 469, 967, 28, 23, 4, 1, 761, 29531, 801, 1069, 27, 39, 9, 1, 7129, 6515, 4523, 285, 3013, 75, 145, 5, 1, 7381, 177133, 84095, 341693, 8591, 7513, 605, 44, 11, 1, 83711, 190553, 341747, 139381, 242537, 1903, 10831, 33, 35, 6, 1
Offset: 1
Examples
The triangle H(n,k) begins: n\k | 0 1 2 3 4 5 6 ----------------------------------------------------- 1 | 1 2 | 3/2 1 3 | 11/6 2 1 4 | 25/12 35/12 5/2 1 5 | 137/60 15/4 17/4 3 1 6 | 49/20 203/45 49/8 35/6 7/2 1 7 | 363/140 469/90 967/120 28/3 23/3 4 1 ...
Links
- Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, Generalized harmonic number identities and a related matrix representation, J. Korean Math. Soc, Volume 44, 2007, 487-498.
- Gi-Sang Cheon and Moawwad E. A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, Journal of Number Theory, Volume 128, Issue 2, 2008, 413-425.
- Joseph M. Santmyer, A Stirling like sequence of rational numbers, Discrete Math., Volume 171, no. 1-3, 1997, 229-235, MR1454453.
Programs
-
Mathematica
H[n_, k_] := -(-1)^(n + k)/n!*(D[Log[t]^(k + 1)/t, {t, n}] /. t->1) Table[Numerator[H[n, k]], {n, 1, 20}, {k, 0, n - 1}] // Flatten
-
Maxima
H(n, k) := -(-1)^(k + n)/n!*at(diff(log(t)^(k + 1)/t, t, n), t = 1)$ create_list(num(H(n, k)), n, 1, 20, k, 0, n - 1);
-
PARI
T(n, k) = -(-1)^(n+k)*numerator(substvec(diffop(L^(k+1)/X, [L, X], [1/X, 1], n), [L, X], [0, 1])/n!); \\ Jinyuan Wang, Mar 13 2025
Formula
T(n,k) = numerator of H(n,k), where H(n,k) = ((1/n!)*(-1)^(n+k+1))*(((d/dt)^n (1/t)*log(t)^(k+1))_{t=1}).
Comments