cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324043 Number of quadrilateral regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.

Original entry on oeis.org

0, 2, 14, 34, 90, 154, 288, 462, 742, 1038, 1512, 2074, 2904, 3774, 4892, 6154, 7864, 9662, 12022, 14638, 17786, 20998, 25024, 29402, 34672, 40038, 46310, 53038, 61090, 69454, 79344, 89890, 101792, 113854, 127476, 141866, 158428, 175182, 193760, 213274, 235444, 258182, 283858, 310750, 339986
Offset: 1

Views

Author

Jinyuan Wang, May 01 2019

Keywords

Comments

A row of n adjacent congruent rectangles can only be divided into triangles (cf. A324042) or quadrilaterals when drawing diagonals. Proof is given in Alekseyev et al. (2015) under the transformation described in A306302.

Examples

			For k adjacent congruent rectangles, the number of quadrilateral regions in the j-th rectangle is:
k\j|  1   2   3   4   5   6   7  ...
---+--------------------------------
1  |  0,  0,  0,  0,  0,  0,  0, ...
2  |  1,  1,  0,  0,  0,  0,  0, ...
3  |  3,  8,  3,  0,  0,  0,  0, ...
4  |  5, 12, 12,  5,  0,  0,  0, ...
5  |  7, 22, 32, 22,  7,  0,  0, ...
6  |  9, 28, 40, 40, 28,  9,  0, ...
7  | 11, 38, 58, 74, 58, 38, 11, ...
...
a(4) = 5 + 12 + 12 + 5 = 34.
		

Crossrefs

Programs

  • Maple
    See Robert Israel link.
    There are also Maple programs for both A306302 and A324042. Then a := n -> A306302(n) - A324042(n); # N. J. A. Sloane, Mar 04 2020
  • Mathematica
    Table[Sum[Sum[(Boole[GCD[i, j] == 1] - 2 * Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}] - n^2, {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
  • PARI
    { A324043(n) = sum(i=1, n, sum(j=1, n, ( (gcd(i, j)==1) - 2*(gcd(i,j)==2) ) * (n+1-i) * (n+1-j) )) - n^2; } \\ Max Alekseyev, Jul 08 2019
    
  • Python
    from sympy import totient
    def A324043(n): return 0 if n==1 else -2*(n-1)**2 + sum(totient(i)*(n+1-i)*(7*i-2*n-2) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # Chai Wah Wu, Aug 16 2021

Formula

a(n) = A115005(n+1) - A177719(n+1) - n - 1 = Sum_{i,j=1..n; gcd(i,j)=1} (n+1-i)*(n+1-j) - 2*Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) - n^2. - Max Alekseyev, Jul 08 2019
a(n) = A306302(n) - A324042(n).
For n>1, a(n) = -2(n-1)^2 + Sum_{i=2..floor(n/2)} (n+1-i)*(7i-2n-2)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021

Extensions

a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019