A324478 a(n) = (6/((n+1)*(n+2)*(n+3))) * multinomial(4*n;n,n,n,n).
1, 6, 252, 18480, 1801800, 209513304, 27485041584, 3937652896320, 603400560305400, 97512510301206000, 16452310738019476320, 2876570958459008603520, 518262201015698050067520, 95794174581229987212924000, 18101994022606737439599480000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Luis Fredes and Avelio Sepulveda, Tree-decorated planar maps, arXiv:1901.04981 [math.CO], 2019. See Remark 4.6.
Crossrefs
Cf. A324152.
Programs
-
Maple
a:= n-> 6*combinat[multinomial](4*n, n$4)/((n+1)*(n+2)*(n+3)): seq(a(n), n=0..20); # Alois P. Heinz, Mar 11 2019
-
Mathematica
c[m_,n_]:=2m Product[1/(n+i), {i, m}] (Multinomial@@ConstantArray[n, m+1]);{1}~Join~Array[c[3, #]&, 20] (* Vincenzo Librandi, Mar 11 2019 *) Flatten[{1, Table[6*(4*n)! / ((n!)^3 * (n+3)!), {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 21 2019 *)
Formula
From Vaclav Kotesovec, Jul 21 2019: (Start)
For n>0, a(n) = 6*(4*n)! / ((n!)^3 * (n+3)!).
a(n) ~ 6 * 2^(8*n - 1/2) / (Pi^(3/2) * n^(9/2)). (End)
Comments