cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324553 a(n) = the smallest number m such that gcd(m, tau(m)) = n where tau(k) = the number of the divisors of k (A000005).

Original entry on oeis.org

1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, 18939904, 180, 94633984, 240, 35721, 11264, 2218786816, 360, 10000, 53248, 26244, 1344, 225754218496, 720, 1031865892864, 1920, 7144929, 1114112, 1960000, 1260, 94076963651584, 4980736, 56070144, 1680, 1848279046291456, 4032, 8131987999031296, 33792, 3600, 96468992, 155444555888459776, 3360, 7529536, 30000
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A009191(m) = n.
The sequence is well-defined. Proof: Let p_1^e_1 * p_2^e2 *...* pk^ek = n then gcd(n * p_(k+1)^(p1-1) * p_(k+2)^(p2-1) * ... *p_(2k)^(pk-1), tau(n * p_(k+1)^(p1-1) * p_(k+2)^(p2-1) * ... *p_(2k)^(pk-1)) = n where p_i is prime and j < m <=> p_j < p_m. Q.E.D. - David A. Corneth, Mar 07 2019

Examples

			For n=3; a(3) = 9 because gcd(9, tau(9)) = gcd (9, 3) = 3 and 9 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^6] | GCD(n, NumberOfDivisors(n)) eq k]): k in [1..16]]
    
  • Mathematica
    Array[If[And[# > 3, PrimeQ@ #], #^2*2^(# - 1), Block[{m = 1}, While[GCD[m, DivisorSigma[0, m]] != #, m++]; m]] &, 32] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    A324553search_and_print(searchlimit,primes_up_to) = { my(m = Map(), k); forprime(p=5,primes_up_to,mapput(m,p,(p^2 * 2^(p-1))); mapput(m,2*p,p * 2^(p-1))); for(n=1,searchlimit,k=gcd(n,numdiv(n)); if(!mapisdefined(m,k), mapput(m,k,n), if(mapget(m,k)>n, print("Presuppositions failed: the first occurrence of ", k, " is already at ",n," not at ", mapget(m,k), " !"); return(1/0)))); for(k=1, oo, if(!mapisdefined(m,k), break, print1(mapget(m,k), ", "))); };
    A324553search_and_print(2^29,127); \\ Antti Karttunen, Mar 06 2019

Formula

For primes p >= 5, a(p) = p^2 * 2^(p-1). For odd primes p, a(2*p) = p * 2^(p-1). - Antti Karttunen, Mar 06 2019

Extensions

More terms from Antti Karttunen (terms a(17) and a(39) also computed by Jon E. Schoenfield), Mar 06 2019