cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A009191 a(n) = gcd(n, d(n)), where d(n) is the number of divisors of n (A000005).

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 4, 3, 2, 1, 6, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 8, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 3, 2, 1, 2, 1, 10, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 1, 1, 2, 1, 8, 1
Offset: 1

Views

Author

Keywords

Comments

a(A046642(n)) = 1.
First occurrence of k: 1, 2, 9, 8, 400, 12, 3136, 24, 36, 80, 123904, 60, 692224, 448, 2025, 384, .... Conjecture: each k is present. - Robert G. Wilson v, Mar 27 2013
Conjecture is true. See David A. Corneth's comment in A324553. - Antti Karttunen, Mar 06 2019

Crossrefs

Cf. A046642 (positions of ones), A324553 (position of the first occurrence of each n).

Programs

Formula

a(n) = gcd(n, A000005(n)) = gcd(n, A049820(n)). - Antti Karttunen, Sep 25 2018

A324554 a(n) = the smallest number m such that gcd(tau(m), sigma(m)) = n where tau(k) = the number of the divisors of k (A000005) and sigma(k) = the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 3, 18, 6, 648, 20, 2916, 30, 288, 304, 82944, 60, 36864, 832, 16200, 168, 5509980288, 612, 31719424, 432, 23328, 44032, 247669456896, 420, 9487368, 258048, 14112, 2496, 31581162962944, 4176, 26843545600, 840, 4064256, 4390912, 42693156, 1980, 151801324109824
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2019

Keywords

Comments

a(n) = the smallest number m such that A009205(m) = n.
a(p) = q^(c*p-1) * k for p prime, where q is some prime, c and k are positive integers. - David A. Corneth, Mar 07 2019

Examples

			For n=3; a(3) = 18 because gcd(tau(18), sigma(18)) = gcd (6, 39) = 3 and 18 is the smallest.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10^5] | GCD(NumberOfDivisors(n), SumOfDivisors(n)) eq k]): k in [1..16]]
    
  • Mathematica
    Array[Block[{m = 1}, While[GCD @@ DivisorSigma[{0, 1}, m] != #, m++]; m] &, 16] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    A324554search_and_print(searchlimit) = { my(m = Map(), k); for(n=1,searchlimit,k=gcd(sigma(n),numdiv(n)); if(!mapisdefined(m,k), mapput(m,k,n))); for(k=1, oo, if(!mapisdefined(m,k), break, print1(mapget(m,k), ", "))); }; \\ Antti Karttunen, Mar 06 2019

Extensions

a(17)-a(37) from Jon E. Schoenfield, Mar 06 2019
Showing 1-2 of 2 results.