A325006 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the facets of a regular n-dimensional orthotope using up to k colors.
0, 1, 0, 3, 0, 0, 6, 3, 0, 0, 10, 15, 1, 0, 0, 15, 45, 20, 0, 0, 0, 21, 105, 120, 15, 0, 0, 0, 28, 210, 455, 210, 6, 0, 0, 0, 36, 378, 1330, 1365, 252, 1, 0, 0, 0, 45, 630, 3276, 5985, 3003, 210, 0, 0, 0, 0, 55, 990, 7140, 20475, 20349, 5005, 120, 0, 0, 0, 0, 66, 1485, 14190, 58905, 98280, 54264, 6435, 45, 0, 0, 0, 0
Offset: 1
Examples
Array begins with A(1,1): 0 1 3 6 10 15 21 28 36 45 55 ... 0 0 3 15 45 105 210 378 630 990 1485 ... 0 0 1 20 120 455 1330 3276 7140 14190 26235 ... 0 0 0 15 210 1365 5985 20475 58905 148995 341055 ... 0 0 0 6 252 3003 20349 98280 376992 1221759 3478761 ... 0 0 0 1 210 5005 54264 376740 1947792 8145060 28989675 ... 0 0 0 0 120 6435 116280 1184040 8347680 45379620 202927725 ... 0 0 0 0 45 6435 203490 3108105 30260340 215553195 1217566350 ... 0 0 0 0 10 5005 293930 6906900 94143280 886163135 6358402050 ... 0 0 0 0 1 3003 352716 13123110 254186856 3190187286 29248649430 ... For a(2,3)=3, each chiral pair consists of two adjacent edges of the square with one of the three colors.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..325
- Robin Chapman, answer to Coloring the faces of a hypercube, Math StackExchange, September 30, 2010.
Crossrefs
Programs
-
Mathematica
Table[Binomial[Binomial[d-n+1,2],n],{d,1,12},{n,1,d}] // Flatten
-
PARI
a(n, k) = binomial(binomial(k, 2), n) array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print("")) /* Print initial 10 rows and 11 columns of array as follows: */ array(10, 11) \\ Felix Fröhlich, May 30 2019
Formula
A(n,k) = binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325010(n,j) * binomial(k,j).
A(n,k) = A325004(n,k) - A325005(n,k) = (A325004(n,k) - A325007(n,k)) / 2 = A325005(n,k) - A325007(n,k).
G.f. for row n: Sum{j=1..2*n} A325010(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: (1+x)^binomial(k,2) - 1.
Comments