cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325225 Lesser of the number of prime factors of n counted with multiplicity and the maximum prime index of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 4, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 1, 3, 2, 3, 2, 2, 2, 2, 1, 3, 3, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			88 has 4 prime indices {1,1,1,5}, the maximum of which is 5, so a(88) = min(4,5) = 4.
		

Crossrefs

Positions of 1's are A174090. Positions of 2's are A325229.

Programs

  • Mathematica
    Table[Min[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]],{n,100}]
  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325225(n) = min(bigomega(n), A061395(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = min(A001222(n), A061395(n)).

Extensions

More terms from Antti Karttunen, Apr 14 2019

A325227 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the lesser of the maximum part and the number of parts is k.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 4, 1, 0, 0, 0, 2, 6, 3, 0, 0, 0, 0, 2, 6, 6, 1, 0, 0, 0, 0, 2, 8, 9, 3, 0, 0, 0, 0, 0, 2, 8, 13, 6, 1, 0, 0, 0, 0, 0, 2, 10, 16, 11, 3, 0, 0, 0, 0, 0, 0, 2, 10, 20, 17, 6, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			Triangle begins:
  1
  2  0
  2  1  0
  2  3  0  0
  2  4  1  0  0
  2  6  3  0  0  0
  2  6  6  1  0  0  0
  2  8  9  3  0  0  0  0
  2  8 13  6  1  0  0  0  0
  2 10 16 11  3  0  0  0  0  0
  2 10 20 17  6  1  0  0  0  0  0
  2 12 24 25 11  3  0  0  0  0  0  0
  2 12 28 33 19  6  1  0  0  0  0  0  0
  2 14 32 44 29 11  3  0  0  0  0  0  0  0
  2 14 38 53 43 19  6  1  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)          (54)        (333)      (4221)    (51111)
  (111111111)  (63)        (432)      (4311)
               (72)        (441)      (5211)
               (81)        (522)      (6111)
               (22221)     (531)      (42111)
               (222111)    (621)      (411111)
               (2211111)   (711)
               (21111111)  (3222)
                           (3321)
                           (32211)
                           (33111)
                           (321111)
                           (3111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==k&]],{n,15},{k,n}]

A265283 Number of ON (black) cells in the n-th iteration of the "Rule 94" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68
Offset: 0

Views

Author

Robert Price, Dec 06 2015

Keywords

Comments

From Gus Wiseman, Apr 13 2019: (Start)
Also the number of integer partitions of n + 3 such that lesser of the maximum part and the number of parts is 2. The Heinz numbers of these partitions are given by A325229. For example, the a(0) = 1 through a(7) = 10 partitions are:
(21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(2111) (222) (2221) (71) (81) (82)
(2211) (22111) (2222) (22221) (91)
(21111) (211111) (22211) (222111) (22222)
(221111) (2211111) (222211)
(2111111) (21111111) (2221111)
(22111111)
(211111111)
(End)

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row:
                        1                          =  1
                      1 1 1                        =  3
                    1 1 . 1 1                      =  4
                  1 1 1 . 1 1 1                    =  6
                1 1 . 1 . 1 . 1 1                  =  6
              1 1 1 . 1 . 1 . 1 1 1                =  8
            1 1 . 1 . 1 . 1 . 1 . 1 1              =  8
          1 1 1 . 1 . 1 . 1 . 1 . 1 1 1            = 10
        1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1          = 10
      1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1        = 12
    1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1      = 12
  1 1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 1    = 14
1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1  = 14
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule = 94; rows = 30; Table[Total[Table[Take[CellularAutomaton[rule, {{1},0},rows-1,{All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
    Total /@ CellularAutomaton[94, {{1}, 0}, 65] (* Michael De Vlieger, Dec 14 2015 *)

Formula

Conjectures from Colin Barker, Dec 07 2015 and Apr 16 2019: (Start)
a(n) = (5-(-1)^n+2*n)/2 = A213222(n+3) for n>1.
a(n) = n+2 for n>1 and even.
a(n) = n+3 for n>1 and odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>2.
G.f.: (1+2*x-x^4) / ((1-x)^2*(1+x)).
(End)

A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 9, 13, 16, 20, 24, 28, 32, 38, 42, 48, 54, 60, 66, 74, 80, 88, 96, 104, 112, 122, 130, 140, 150, 160, 170, 182, 192, 204, 216, 228, 240, 254, 266, 280, 294, 308, 322, 338, 352, 368, 384, 400, 416, 434, 450, 468, 486, 504, 522, 542, 560
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (321)   (322)    (332)     (333)      (433)
         (411)   (331)    (422)     (432)      (442)
         (3111)  (421)    (431)     (441)      (532)
                 (511)    (521)     (522)      (541)
                 (3211)   (611)     (531)      (622)
                 (31111)  (3221)    (621)      (631)
                          (3311)    (711)      (721)
                          (32111)   (3222)     (811)
                          (311111)  (3321)     (3322)
                                    (32211)    (3331)
                                    (33111)    (32221)
                                    (321111)   (33211)
                                    (3111111)  (322111)
                                               (331111)
                                               (3211111)
                                               (31111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]
Showing 1-4 of 4 results.