cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325227 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the lesser of the maximum part and the number of parts is k.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 4, 1, 0, 0, 0, 2, 6, 3, 0, 0, 0, 0, 2, 6, 6, 1, 0, 0, 0, 0, 2, 8, 9, 3, 0, 0, 0, 0, 0, 2, 8, 13, 6, 1, 0, 0, 0, 0, 0, 2, 10, 16, 11, 3, 0, 0, 0, 0, 0, 0, 2, 10, 20, 17, 6, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			Triangle begins:
  1
  2  0
  2  1  0
  2  3  0  0
  2  4  1  0  0
  2  6  3  0  0  0
  2  6  6  1  0  0  0
  2  8  9  3  0  0  0  0
  2  8 13  6  1  0  0  0  0
  2 10 16 11  3  0  0  0  0  0
  2 10 20 17  6  1  0  0  0  0  0
  2 12 24 25 11  3  0  0  0  0  0  0
  2 12 28 33 19  6  1  0  0  0  0  0  0
  2 14 32 44 29 11  3  0  0  0  0  0  0  0
  2 14 38 53 43 19  6  1  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)          (54)        (333)      (4221)    (51111)
  (111111111)  (63)        (432)      (4311)
               (72)        (441)      (5211)
               (81)        (522)      (6111)
               (22221)     (531)      (42111)
               (222111)    (621)      (411111)
               (2211111)   (711)
               (21111111)  (3222)
                           (3321)
                           (32211)
                           (33111)
                           (321111)
                           (3111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==k&]],{n,15},{k,n}]

A325229 Heinz numbers of integer partitions such that lesser of the maximum part and the number of parts is 2.

Original entry on oeis.org

6, 9, 10, 12, 14, 15, 18, 21, 22, 24, 25, 26, 27, 33, 34, 35, 36, 38, 39, 46, 48, 49, 51, 54, 55, 57, 58, 62, 65, 69, 72, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 96, 106, 108, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 144, 145, 146
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A265283.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   46: {1,9}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],Min[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]==2&]

A325231 Numbers of the form 2 * p or 3 * 2^k, p prime, k > 1.

Original entry on oeis.org

6, 10, 12, 14, 22, 24, 26, 34, 38, 46, 48, 58, 62, 74, 82, 86, 94, 96, 106, 118, 122, 134, 142, 146, 158, 166, 178, 192, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 384, 386, 394, 398, 422, 446, 454, 458, 466
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Also numbers n such that the sum of prime indices of n minus the greater of the number of prime factors of n counted with multiplicity and the largest prime index of n is 1. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, and their sum is A056239.

Examples

			The sequence of terms together with their prime indices begins:
    6: {1,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   34: {1,7}
   38: {1,8}
   46: {1,9}
   48: {1,1,1,1,2}
   58: {1,10}
   62: {1,11}
   74: {1,12}
   82: {1,13}
   86: {1,14}
   94: {1,15}
   96: {1,1,1,1,1,2}
  106: {1,16}
  118: {1,17}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[primeMS[#]]-Max[Length[primeMS[#]],Max[primeMS[#]]]==1&]
  • Python
    from sympy import isprime
    A325231_list = [n for n in range(6,10**6) if ((not n % 2) and isprime(n//2)) or (bin(n)[2:4] == '11' and bin(n).count('1') == 2)] # Chai Wah Wu, Apr 16 2019

A325228 Number of integer partitions of n such that the lesser of the maximum part and the number of parts is 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 9, 13, 16, 20, 24, 28, 32, 38, 42, 48, 54, 60, 66, 74, 80, 88, 96, 104, 112, 122, 130, 140, 150, 160, 170, 182, 192, 204, 216, 228, 240, 254, 266, 280, 294, 308, 322, 338, 352, 368, 384, 400, 416, 434, 450, 468, 486, 504, 522, 542, 560
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (311)  (321)   (322)    (332)     (333)      (433)
         (411)   (331)    (422)     (432)      (442)
         (3111)  (421)    (431)     (441)      (532)
                 (511)    (521)     (522)      (541)
                 (3211)   (611)     (531)      (622)
                 (31111)  (3221)    (621)      (631)
                          (3311)    (711)      (721)
                          (32111)   (3222)     (811)
                          (311111)  (3321)     (3322)
                                    (32211)    (3331)
                                    (33111)    (32221)
                                    (321111)   (33211)
                                    (3111111)  (322111)
                                               (331111)
                                               (3211111)
                                               (31111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min[Length[#],Max[#]]==3&]],{n,30}]

A267460 Number of OFF (white) cells in the n-th iteration of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

0, 2, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68
Offset: 0

Views

Author

Robert Price, Jan 15 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=133; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}] (* Number of White cells in stage n *)

Formula

Conjectures from Colin Barker, Jan 16 2016: (Start)
a(n) = (2*n-(-1)^n+5)/2 for n>1.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>4.
G.f.: 2*x*(1+x-x^3) / ((1-x)^2*(1+x)).
(End)
Showing 1-5 of 5 results.