cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325471 a(n) is the product of divisors d of n such that d divides sigma(d).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 28, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 28, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 168, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 16 2019

Keywords

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 * 6 = 6.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]]
    
  • Mathematica
    a[n_] := Times @@ Select[Divisors[n], Divisible[DivisorSigma[1, #], #] &]; Array[a, 100] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n)={vecprod([d | d<-divisors(n), sigma(d) % d==0])} \\ Andrew Howroyd, Aug 16 2019

Formula

a(A097603(n)) > 1.