A325471 a(n) is the product of divisors d of n such that d divides sigma(d).
1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 28, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 28, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 168, 1, 1
Offset: 1
Keywords
Examples
For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 * 6 = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Magma
[&*[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]]
-
Mathematica
a[n_] := Times @@ Select[Divisors[n], Divisible[DivisorSigma[1, #], #] &]; Array[a, 100] (* Amiram Eldar, Aug 17 2019 *)
-
PARI
a(n)={vecprod([d | d<-divisors(n), sigma(d) % d==0])} \\ Andrew Howroyd, Aug 16 2019
Formula
a(A097603(n)) > 1.